1P 2015 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 164: Linje 164:


==Oppgave 8==
==Oppgave 8==
$f(x)= -x$  Dette er en rett linje uten konstantledd, det betyr at grafen går gjennom origo. Den har stigningstall -1, (en til høyre, en ned) hvilket betyr a B er riktig graf.
$g(x) = -x^2+x+2$ Dette er en parabel eller andregradsfunksjon. Når det står minus forran andregradsleddet betyr det at den vender sin hule side ned. Den skj


==DEL TO==
==DEL TO==

Sideversjonen fra 29. des. 2015 kl. 10:08

Løsningsforslag (pdf) fra bruker joes. Send gjerne en melding hvis du har kommentarer til løsningsforslaget. På forhånd, takk.


DEL EN

Oppgave 1

a)

$\frac {0,4}{1,0} = \frac{2,4}{x} \\ 0,4x = 2,4 \\ x= \frac{2,4}{0,4} \\ x= 6$

Man bør ikke spise mere enn 6 gram salt daglig.

b)

Dersom 100g inneholder 0,8g vil 300g inneholde tre ganger så mye:

$0,8g \cdot 3= 2,4g$ salt

En porsjon pizza inneholder 2,4 gram salt.

c)

$ 2,4 \cdot 0,4g = 0,96 g$ natrium.

$0,96 : 2,4 = \\ 9,6: 24= 0,4$

Dvs 40% av dagsbehovet.

Oppgave 2

a)

Ved avlesning: skjæringspunkt i (2, 1).

b)

$f(x)= g(x) \\ \frac 12x = -x+3 \\ x =-2x + 6 \\ 3x =6 \\ x=2$

f(2)= 1

Skjæringspunkt mellom f og g : (2,1)

Oppgave 3

Reallønn = nominell lønn $\cdot \frac{100}{ indeks} $

$360000= 450000 \cdot \frac {100}{x} \\ x = \frac{45000000}{360000} =125$

Konsumprisindeksen var på 125 det året.

Oppgave 4

Dersom omvendt proporsjonale størrelser: $y = \frac kx \\ xy=k$


20kr / is $\cdot$ 200 is = 4000 kr

25kr / is $\cdot$ 160 is = 4000 kr

40kr / is $\cdot$ 100 is = 4000 kr

Pris og antall er omvendt proporsjonale størrelser.

Oppgave 5

a)

Gutt: ( fars høyde + mors høyde) $\cdot$ 0,5 + 7 cm

Jente: ( fars høyde + mors høyde) $\cdot$ 0,5 - 7 cm


Ola: ( 180 cm + 160 cm) $\cdot$ 0,5 + 7 cm = 177 cm

Kari: ( 180 cm + 160 cm) $\cdot$ 0,5 - 7 cm = 163 cm


Kari blir 163 cm og Ola 177 cm, i følge formlene.

b)

( 186cm + mors høyde) $\cdot$ 0,5 + 7 cm = 189 cm.

$(186 +x) \cdot 0,5 +7 = 189 \\ (186+x) \cdot 0,5 = 182 \\ 186+x = 364 \\x= 178$


Mor er 178 centimeter høy, i følge formelen.

Oppgave 6

a)

Volum av sylinder: $V= \pi r^2 h$

Ved overslag runder man tallen til noe som blir letterer å regne med, samtidig som man ikke bør fjerne seg for langt fra de eksakte verdiene. Når man ganger sammen to eller flere tall kan det være lurt å runde noen opp og noen ned:

$V= \pi \cdot 0,6^2 \cdot 1,2 \\ \approx 3 \cdot 0,4 \cdot 1,2 \\ = 1,44$

Alle benevninger var i meter, det betyr at svaret er i kubikkmeter: $1,44m^3 = 1440 dm^3$, som er det samme som 1440 liter.

Volumet til en rundball er i størrelsesorden 1400 liter. (Om du fikk et annet svar kan det være like riktig siden dette kun er et overslag).

b)

Overflate av sylinder:

$O = 2 \pi r^2 + 2 \pi r h$

Setter Pi = 3 og

Oppgave 7

Smittet Ikke smittet sum
Tester positivt 58 10 68
Tester ikke positivt 2 290 292
sum 60 300 360

b)

P( pos | smittet) = $\frac{58}{60} = \frac{29}{30}$

c)

P( ikke smittet | pos test) = $\frac{10}{68} = \frac{5}{34}$

Oppgave 8

$f(x)= -x$ Dette er en rett linje uten konstantledd, det betyr at grafen går gjennom origo. Den har stigningstall -1, (en til høyre, en ned) hvilket betyr a B er riktig graf.


$g(x) = -x^2+x+2$ Dette er en parabel eller andregradsfunksjon. Når det står minus forran andregradsleddet betyr det at den vender sin hule side ned. Den skj

DEL TO

Oppgave 1

a)

b)

c)

Oppgave 2

a)

b)

Oppgave 3

a)

b)

c)

d)

Oppgave 4

a)

b)

c)

Oppgave 5

a)

b)

c)

Oppgave 6

a)

b)

Oppgave 7

a)

b)

c)

d)