2P 2015 høst LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Ingen redigeringsforklaring |
|||
Linje 9: | Linje 9: | ||
===Oppgave 1=== | ===Oppgave 1=== | ||
70% er det samme som 280 kroner. 280: 70 = 4. Dvs 1% er 4 kroner. Da er 100% lik 400 kroner. (Finnes flere andre, mer elegante måter å gjøre det på også). | |||
===Oppgave 2=== | |||
$3,4 \cdot 10^9 \cdot 4 \cdot 10^{-3} \\ 3,4 \cdot 4 \cdot 10^{9-3}\\ 13,6 \cdot 10^{6} \\ 1,36 \cdot 10^7$ | $3,4 \cdot 10^9 \cdot 4 \cdot 10^{-3} \\ 3,4 \cdot 4 \cdot 10^{9-3}\\ 13,6 \cdot 10^{6} \\ 1,36 \cdot 10^7$ | ||
===Oppgave 3=== | ===Oppgave 3=== | ||
===Oppgave 4=== | |||
Sideversjonen fra 10. des. 2015 kl. 22:40
DEL EN
Oppgave 1
70% er det samme som 280 kroner. 280: 70 = 4. Dvs 1% er 4 kroner. Da er 100% lik 400 kroner. (Finnes flere andre, mer elegante måter å gjøre det på også).
Oppgave 2
$3,4 \cdot 10^9 \cdot 4 \cdot 10^{-3} \\ 3,4 \cdot 4 \cdot 10^{9-3}\\ 13,6 \cdot 10^{6} \\ 1,36 \cdot 10^7$
Oppgave 3
Oppgave 4
Beløpet hun vant: x
Vekstfaktor til 3,2%: 1,032
Tid: 10 år
Uttrykk : $x \cdot 1,032^{10} = 500138 \\ x= 500138 \cdot 1,032^{-10}$