Introduksjon til differensiallikninger: Forskjell mellom sideversjoner
Fra Matematikk.net
Ny side: En differensialligning vil typisk beskrive en forandring av en variabel i tid og/eller rom. Den skiller seg fra "vanlige" ligninger ved at løsningene er funksjoner, ikke bestemte verdier. ... |
Ingen redigeringsforklaring |
||
Linje 6: | Linje 6: | ||
'''Eksempel''' | '''Eksempel''' | ||
:<tex>f^{,}(x)=0</tex>. Løsningen finnes direkte ved integrasjon; vi får at <tex>f(x)=c</tex> for en konstant <tex>c</tex>. | :En enkel ordinær differensialligning av første orden er <tex>f^{,}(x)=0</tex>. Løsningen finnes direkte ved integrasjon; vi får at <tex>f(x)=c</tex> for en konstant <tex>c</tex>. | ||
</blockquote> | </blockquote> | ||
Linje 13: | Linje 13: | ||
'''Eksempel''' | '''Eksempel''' | ||
:<tex>m\ddot{x}(t)=10</tex>. Dette er Newtons andre lov med konstant kraft (10 Newton) der <tex>x(t)</tex> er posisionen ved tida <tex>t</tex>. | :En enkel andreordens ordinær differensialligning er <tex>m\ddot{x}(t)=10</tex>. Dette er Newtons andre lov med konstant kraft (10 Newton) der <tex>x(t)</tex> er posisionen ved tida <tex>t</tex>. | ||
</blockquote> | </blockquote> |
Sideversjonen fra 19. jan. 2010 kl. 20:17
En differensialligning vil typisk beskrive en forandring av en variabel i tid og/eller rom. Den skiller seg fra "vanlige" ligninger ved at løsningene er funksjoner, ikke bestemte verdier. Teorien for differensialligninger er fundamental for forståelsen av dynamikken i naturen og danner grunnlaget for blant annet kvantemekanikken.
- Formelt vil en ordinær diff.ligning være på formen <tex>g(x,f,f^, ,f^{,,},\ldots , f^{(n)})=0</tex> der <tex>g</tex> er en gitt funksjon. <tex>n</tex> kalles ligningens orden og <tex>f^{(n)}</tex> er den n-te deriverte mhp. variabelen <tex>x</tex>.
Eksempel
- En enkel ordinær differensialligning av første orden er <tex>f^{,}(x)=0</tex>. Løsningen finnes direkte ved integrasjon; vi får at <tex>f(x)=c</tex> for en konstant <tex>c</tex>.
Eksempel
- En enkel andreordens ordinær differensialligning er <tex>m\ddot{x}(t)=10</tex>. Dette er Newtons andre lov med konstant kraft (10 Newton) der <tex>x(t)</tex> er posisionen ved tida <tex>t</tex>.