1T 2015 vår LØSNING: Forskjell mellom sideversjoner
Linje 237: | Linje 237: | ||
24x + 32y = 2752 | 24x + 32y = 2752 | ||
[[File:1t-v15-4.png]] | |||
==Oppgave 5== | ==Oppgave 5== |
Sideversjonen fra 10. jul. 2015 kl. 12:00
Løsning laget av mattepratbruker LektorH
DEL EN
Oppgave 1
$\frac{7,5 \cdot 10^{15}}{0,003} \\= \frac{7,5}{3} \cdot 10^{15+3} \\ = 2,5 \cdot 10^{18}$
Oppgave 2
<math> \left[ \begin{align*}x+6y=1 \\ 2x+4y=-6 \end{align*}\right] </math>
<math> \left[ \begin{align*} x= 1-6y \\ 2(1-6y)+4y=-6\end{align*}\right] </math>
<math> \left[ \begin{align*} x= 1-6y \\ 2-12y+4y= -6 \end{align*}\right] </math>
<math> \left[ \begin{align*} y=1 \end{align*}\right] </math>
Innsatt i første likning gir det x=-5, dvs:
$x= -5 \wedge y= 1$
Oppgave 3
$x^2-3x-10 >0$
Løser andregradslikningen: $x^2-3x-10=0 \\ x= \frac{3 \pm \sqrt{9+40}}{2} \\ x= \frac{3 \pm 7}{2} \\ x= -2 \vee x= 5$
Vi observerer at uttrykket skulle være større enn null: $x \in < \leftarrow, -2> \cup <5, \rightarrow>$
Oppgave 4
a)
$4^{\frac12} \cdot 8^0 \cdot 2^{-1} \cdot \sqrt[4]{16} \\ = 2 \cdot 1 \cdot 0,5 \cdot 2 \\=2 $
b)
$\sqrt{18}\cdot \sqrt 2 + \frac{\sqrt{72}}{\sqrt 8} \\= \sqrt{18 \cdot 2} + \sqrt{\frac{72}{8}} \\ = 6+3=9$
Oppgave 5
$lg(x^2-0,9) = -1 \\ 10^{lg(x^2-0,9)} = 10^{-1} \\ x^2- 0,9 = 0,1 \\ x^2 =1 \\x = \pm 1$
Vi kan ikke ta logaritmen til et negativt tall, og ma sjekke begge løsningene. I dette tilfellet kan begge løsninger brukes:
$x= - 1 \vee x=1$
Oppgave 6
$x^2+bx+16$
Vi registrerer at $16 = (\pm4)^2 $. Da må b vare lik det dobbelte av $\pm 4$, i følge kvadratsetningene.
$x^2 \pm 8x+16 = (x \pm4)^2$
b er altså lik $ \pm8$
Oppgave 7
$2x(x-2)-(x-2)(2x+1) \\ = 2x^2 -4x- ( 2x^2+x-4x-2) \\= 2x^2 -4x-2x^2-x+4x+2 \\ = -x+2$
Oppgave 8
$\frac{x^2-12x+36}{2X^2 - 72} \\= \frac{(x-6)(x-6)}{2(x+6)(x-6)} \\ =\frac{x-6}{2(x+6)}$
Oppgave 9
En rett linje har likningen :
y = ax + b
Stigningstall er: a = $\frac{\Delta y}{ \Delta x} = \frac {4-2}{3-(-1)} = \frac 12$
Bruker x og y verdi i første punkt og finner b:
$2 = \frac 12 \cdot -1 + b \\ b = \frac 52$
$y= \frac 12x + \frac 52$
Oppgave 10
a)
Bruker Pytagoras på trekant ABC og får:
AB = $\sqrt{2^2-1^2} = \sqrt 3$
Bruker Pytagoras på trekant DEF og får:
DF = $\sqrt{1^2 + 1^2} = \sqrt 2$
b)
Cosinus til en vinkel er hossliggende katet delt på hypotenus.
Sinus til en vinkel er motstående katet delt på hypotenus.
Tangens til en vinkel er motstående katet delt på hossliggende katet.
u | sin u | cos u | tan u |
$30^{\circ}$ | $\frac 12$ | $\frac{\sqrt 3}{2}$ | $\frac{1}{\sqrt 3}$ |
$45^{\circ}$ | $\frac{\sqrt 2}{2}$ | $\frac{\sqrt 2}{2}$ | 1 |
$60^{\circ}$ | $\frac{\sqrt 3}{2}$ | $\frac 12$ | $\sqrt 3$ |
Oppgave 11
a)
Trekker to, sannsynnlighet for ikk e "Jump":
P( ikke Jump) = $xx$
b)
c)
Oppgave 12
$f(x)= -2x^2+4x+6$
a)
Skjæring med y - akse:
x = 0 som gir punktet (0,6).
f(0) = 6
Skjæring med x - akse:
f(x) = 0
b)
c)
Vi ser fra figuren i b at f(x) = g(x) har løsninger for x = -1 og for x = 2.
Oppgave 13
Jordens radius er r, og omkretsen er O.
$O = 2\pi r$
Dersom vi forlenger tauet med 20 meter blir ny omkrets: O + 20. Vi må da finne tillhørende radius.
$r= \frac{O}{2 \pi}$
Ny radius blir:
$r_{20} = \frac{O+20}{2 \pi} = \frac{O}{2 \pi} + \frac{10}{\pi} $
Tauet vil være ca. 3 meter over bakkenivå så det vil være mulig å gå under tauet.
DEL TO
Oppgave 1
a)
80 personer.
1,045 tilsvarerer en vekst på 4,5%
b)
$f(61) = 80 \cdot 1,045^{61} = 1173$
Ja, antallet vil være ca 1170.
c)
f(16) forteller hvor mange "likes" det var 16. april, 162.
f´(16) forteller om den momentane endringen denne dagen, en økning på ca 7 "likes".
Oppgave 2
Oppgave 3
Oppgave 4
Antall små is : x
Antall store is: y
20 liter is gir $12 \cdot 20 = 240$ kuler.
2x + 3y = 240
Liten is koster 24 kroner og stor is 32 kroner. Hun solgte for 2752 kroner:
24x + 32y = 2752
Oppgave 5
Vi har symmetri og tre sirkler.
Arealet av sirkel med diameter a: $A_{AD}=\pi r^2 = \pi \frac{a^2}{4} $
Areal av sort område: $A_{skravert} = A_{AC} - A_{AB} = \frac{\pi a^2}{9} - \frac{\pi a^2}{36} = \frac{\pi a^2}{12} $
12:4 = 3, dvs. forholdet mellom arealet av sirkelen og det skraverte området er 3.