1P 2015 vår LØSNING: Forskjell mellom sideversjoner
Linje 135: | Linje 135: | ||
Målestokk: | Målestokk: | ||
$\frac 1x = \frac{2 \cdot 10^{-2}}{20 \cdot 10^{-6}} | $\frac 1x = \frac{2 \cdot 10^{-2}}{20 \cdot 10^{-6}}$ | ||
==Oppgave 8== | ==Oppgave 8== |
Sideversjonen fra 5. jul. 2015 kl. 17:34
- Løsningsforslag (pdf) fra joes. Send gjerne en melding hvis du oppdager feil i fasit. På forhånd, takk.
DEL EN
Oppgave 1
a)
$0,451= 45,1$%
b)
$\frac{5}{25} = \frac{5 \cdot 4}{25 \cdot 4} = \frac{20}{100} = 20$%
Oppgave 2
a)
$\angle B = 180^{\circ} - 48,5^{\circ} - 92,9^{\circ} =38,6^{\circ} $
Vinklene i de to trekantene er parvis like, A = D, B = E og C = F , derfor er de to trekantene formlike.
b
$\frac{BC}{9} = \frac{8}{12} \\ 12BC = 72 \\ BC = 6$
Oppgave 3
Diagonalen i rektangelet er $\sqrt{6^2 + 7^2} = \sqrt{85}$
Siden 9 ganger 9 er 81, bør det være fullt mulig å få den kvadratiske planten gjennom vinduet.
Oppgave 4
Areal av rektangel, minus de tre hvite trekantene blir:
Areal blått område: $A= 12 cm \cdot 3cm - \frac{6cm \cdot 3cm}{2}= 36cm^2- 9cm^2 = 27cm^2$
Arealet av det skraverete området er 27 kvadratcentimeter.
Oppgave 5
Oppgave 6
a)
P ( ikke "Jump") = $\frac 69 \cdot \frac 58 = \frac {5}{12}$
Det er fem tolvtedels sjanse for at du ikke tar en "Jump".
b)
En "Surf" og en "Catch" kan velges ut på to måter, først "Surf", så "Catch", eller motsatt:
P(en Surf og en Catch)=$ \frac 29 \cdot \frac 48 + \frac 49 \cdot \frac 28 = \frac 29$
Det er to nidels sannsynlighet for en av hver av de to.
Oppgave 7
$\frac{6kr}{120} = \frac{x}{180}\\ x = \frac{6kr \cdot 180 }{120} \\ x = 8 kr$
Dersom varen følger indeksen vil den koste 8 kroner i 2014.
Oppgave 8
$s=v_0 + \frac12 at^2$
a)
$s= 0 \cdot 8 + \frac 12 \cdot 10 \cdot 8^2 \\ s= 0 + \frac {640}{2} \\ s= 320$
b)
$s=v_0t+ \frac 12at^2 \\ (s - v_0t)2 = at^2 \\ a= \frac{2(s-v_0t)}{t^2} \\ a= \frac{2(144-20 \cdot 4)}{16} \\ a= 8$
Oppgave 9
a)
Funksjonsuttrykk for rette linjer: y = ax + b
A:
Grafen begynner på 200 på y- aksen, når x ( antall kilometer er null). Det betyr at b = 200. Når x = 20 er y = 400. På 20 x enheter har y økt med 200. Det betyr at når x øker med en, øker y med 10. Da blir funksjonsuttrykket :
y = 10x + 200
B:
y= 5x + 800
b)
Dersom man kjører mindre enn 120 kilometer er firma A billigst. Firma B er billigst for kjørelengder over 120 kilometer.
c)
Nei. I både A og B er kilometerprisen større for de første kilometrene. Ved proporsjonalitet går grafen gjennom origo.
Oppgave 10
Siden boksene har samme høyde, vil boksen mdstørst grunnflate også ha størst volum.
Prisme: 7cm $\cdot$ 4cm = 28 $cm^2$
Vi avrunder pi til 3,14.
Sylinder: $9 \cdot 3,14 > 28$
Det betyr at sylinderen har et større volum.
DEL TO
Oppgave 1
Oppgave 2
Oppgave 3
Oppgave 4
Oppgave 5
Oppgave 6
Oppgave 7
Målestokk:
$\frac 1x = \frac{2 \cdot 10^{-2}}{20 \cdot 10^{-6}}$
Oppgave 8
Oppgave 9
Volum av shylinder:
$V= \pi r^2h \\ r = \sqrt{\frac{v}{\pi h }} \\ r = \sqrt{\frac{150}{\pi \cdot 8 }}$
Radius i tanken er 2,44 dm