1P 2015 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 56: Linje 56:
En "Surf" og en "Catch" kan velges ut på to måter, først "Surf", så "Catch", eller motsatt:
En "Surf" og en "Catch" kan velges ut på to måter, først "Surf", så "Catch", eller motsatt:


$$
P(en Surf og en Catch)=$ \frac 29 \cdot \frac 48 + \frac 49 \cdot \frac 28 = \frac 29$
 
Det er to nidels sannsynlighet for en av hver av de to.


==Oppgave 6==
==Oppgave 6==

Sideversjonen fra 4. jul. 2015 kl. 09:59

Diskusjon av denne oppgaven

Vurderingsskjema

Sensorveiledning


DEL EN

Oppgave 1

a)

$0,451= 45,1$%

b)

$\frac{5}{25} = \frac{5 \cdot 4}{25 \cdot 4} = \frac{20}{100} = 20$%

Oppgave 2

a)

$\angle B = 180^{\circ} - 48,5^{\circ} - 92,9^{\circ} =38,6^{\circ} $

Vinklene i de to trekantene er parvis like, A = D, B = E og C = F , derfor er de to trekantene formlike.

b

$\frac{BC}{9} = \frac{8}{12} \\ 12BC = 72 \\ BC = 6$

Oppgave 3

Diagonalen i rektangelet er $\sqrt{6^2 + 7^2} = \sqrt{85}$

Siden 9 ganger 9 er 81, bør det være fullt mulig å få den kvadratiske planten gjennom vinduet.

Oppgave 4

Areal av rektangel, minus de tre hvite trekantene blir:

Areal blått område: $A= 12 cm \cdot 3cm - \frac{6cm \cdot 3cm}{2}= 36cm^2- 9cm^2 = 27cm^2$

Arealet av det skraverete området er 27 kvadratcentimeter.

Oppgave 5

Oppgave 6

a)

P ( ikke "Jump") = $\frac 69 \cdot \frac 58 = \frac {5}{12}$

Det er fem tolvtedels sjanse for at du ikke tar en "Jump".

b)

En "Surf" og en "Catch" kan velges ut på to måter, først "Surf", så "Catch", eller motsatt:

P(en Surf og en Catch)=$ \frac 29 \cdot \frac 48 + \frac 49 \cdot \frac 28 = \frac 29$

Det er to nidels sannsynlighet for en av hver av de to.

Oppgave 6

Oppgave 7

Oppgave 8

Oppgave 9

Oppgave 10

Oppgave 11