S2 eksempeloppgave 2015 vår LØSNING: Forskjell mellom sideversjoner
m →b) |
|||
Linje 70: | Linje 70: | ||
==Oppgave 5== | ==Oppgave 5== | ||
$f(x)=x^3-4x^2+4x , \space x∈〈-1,4〉$ | |||
===a)=== | |||
Nullpunkt: | |||
$f(x)=0 \\ | |||
x^3-4x^2+4x=0 \\ | |||
x(x^2-4x+4)=0 \\ | |||
x=0 \vee x^2-4x+4=0 \\ | |||
x=0 \vee (x-2)^2=0 \\ | |||
x=0 \vee x=2 $ | |||
Nullpunktene er $x=0$ og $x=2$. | |||
Topp-/bunnpunkt: | |||
$f'(x)=3x^2-8x+4$ | |||
$f'(x)=0 \\ | |||
3x^2-8x+4=0 \\ | |||
x=\frac{-(-8)±\sqrt{(-8)^2-4⋅3⋅4}}{2⋅3}=\frac{8±\sqrt{64-48}}{6}=\frac{8±\sqrt{16}}{6}=\frac{8±4}{6} \\ | |||
x=2 \vee x=\frac{2}{3} $ | |||
$3x^2-8x+4=3(x-2)(x-\frac{2}{3}) $ | |||
(Sett inn fortegnslinje) | |||
$f(2)=0 \\ | |||
f(\frac{2}{3})=\frac{32}{27} $ | |||
Toppunktet er $(\frac{2}{3},\frac{32}{27})$ . Bunnpunktet er $(2,0)$. | |||
===b)=== | |||
==Oppgave 6== | ==Oppgave 6== |
Sideversjonen fra 23. apr. 2015 kl. 12:24
DEL 1 (3 timer)
Oppgave 1
a)
$f(x)=3x^3-2x+5 \\ f'(x)=3\cdot 3x^{2}-2=9x^{2}-2$
b)
$g(x)=xe^{2x} \\ g'(x)=1⋅e^{2x}+x⋅2e^{2x}=(1+2x) e^{2x}$
Oppgave 2
Bestem $h'(2)$ når $h(x)=\frac{e^x}{x-1}$
$h'(x)=\frac{e^x⋅(x-1)-e^x⋅1}{(x-1)^2}=\frac{xe^x-e^x-e^x}{(x-1)^2} =\frac{xe^x-2e^x}{(x-1)^2} =\frac{(x-2) e^x}{(x-1)^2} \\ h'(2)=\frac{(2-2) e^2}{(2-1)^2} =\frac{0⋅e^2}{1}=0 $
Oppgave 3
$P(x)=2x^3-6x^2-8x+24$
a)
$P(3)=2⋅3^3-6⋅3^2-8⋅3+24\\ =2⋅27-6⋅9-24+24\\ =54-54-24+24=0 $
b)
Vi har vist at $P(x)=0$ for $x=3$. Då seier nullpunktsetninga at polynomdivisjonen $P(x):(x-3)$ går opp.
$(2x^3-6x^2-8x+24):(x-3)=2x^2-8$
Faktoriserer $2x^2-8$:
$2x^2-8=2(x^2-4)=2(x-2)(x+2)$
$P(x)=(2x^2-8)(x-3)=2(x-2)(x+2)(x-3)$
c)
$\frac{2x^3-6x^2-8x+24}{2x^2-8}=\frac{2(x-2)(x+2)(x-3)}{2(x-2)(x+2)} =(x-3)$
Oppgave 4
a)
(Sett inn tabell)
Formel for $S_{n}$:
$S_{n}=n^3$
b)
$S_n$ er summen av dei $n$ første ledda
$S_n=a_1+a_2+...+a_{n-1}+a_n$
$S_{n-1}$ er summen av dei $(n-1)$ første ledda:
$S_{n-1}=a_1+a_2+...+a_{n-1}$
Vi får at: $S_n=S_{n-1}+a_n \\ a_n=S_n-S_{n-1}$
$a_n=S_n-S_{n-1} \\ a_n=n^3-(n-1)^3 \\ =n^3-(n-1) (n-1)^2 \\ =n^3-(n-1)(n^2-2n+1) \\ =n^3-n^3+2n^2-n+n^2-2n+1\\ =3n^2-3n+1$
Oppgave 5
$f(x)=x^3-4x^2+4x , \space x∈〈-1,4〉$
a)
Nullpunkt:
$f(x)=0 \\ x^3-4x^2+4x=0 \\ x(x^2-4x+4)=0 \\ x=0 \vee x^2-4x+4=0 \\ x=0 \vee (x-2)^2=0 \\ x=0 \vee x=2 $
Nullpunktene er $x=0$ og $x=2$.
Topp-/bunnpunkt:
$f'(x)=3x^2-8x+4$
$f'(x)=0 \\ 3x^2-8x+4=0 \\ x=\frac{-(-8)±\sqrt{(-8)^2-4⋅3⋅4}}{2⋅3}=\frac{8±\sqrt{64-48}}{6}=\frac{8±\sqrt{16}}{6}=\frac{8±4}{6} \\ x=2 \vee x=\frac{2}{3} $
$3x^2-8x+4=3(x-2)(x-\frac{2}{3}) $
(Sett inn fortegnslinje)
$f(2)=0 \\ f(\frac{2}{3})=\frac{32}{27} $
Toppunktet er $(\frac{2}{3},\frac{32}{27})$ . Bunnpunktet er $(2,0)$.