2P 2014 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 85: Linje 85:
|-
|-
|Total
|Total
|100
|
|
|
|4600
|
|}
|}



Sideversjonen fra 18. okt. 2014 kl. 08:15

oppgaven som pdf

løsning 1 som pdf

løsning 2 som pdf

løsning 2 som LibreOffice Writer fil

løsning 2 GeoGebra-filer og regneark til løsningen

DEL EN

Oppgave 1

2, 5, 8, 10, 10, 15, 22, 28, 40, 50

Skriver tallene opp i stigende rekkefølge med tanke på median. Tall nummer fem er 10 og tall nummer seks er 15. Median bli gjennomsnittet av disse:

$\frac{10+15}{2} = 12,5$

Median er 12,5

Gjennomsnitt: $ \frac{2+5+8+10+10+15+22+28+40+50}{10} = 19$

Gjennomsnittet er 19.

Variasjonsbredden er 50 - 2 = 48.

Oppgave 2

Får tallene på samme form.

$( \frac 23)^2 = \frac 49 \\ (\frac 14)^0 =1 \\ 6 \cdot 2^{-3} = \frac 68 \\ \frac{0,0016}{2\cdot 10^{-3}} = \frac {16}{20} = \frac {8}{10}$

Fra minst til størst blir det: $ \frac 49, \frac 68, \frac {8}{10}, 1$

eller

$( \frac 23)^2 , 6 \cdot 2^{-3},\frac{0,0016}{2\cdot 10^{-3}},(\frac 14)^0 $

Dersom du synes dette er vannskelig å se kan du utvide brøkene slik at alle har samme nevner, da blir telleren avgjørende for størrelsen.

Oppgave 3

5 millioner = 5 000 000 = $5,0 \cdot 10^{6} $

150 milliarder = 150 000 000 000 = $1,5 \cdot 10^{11}$

$ \frac{1,5 \cdot 10^{11}}{5,0 \cdot 10^{6}}$

Oppgave 4

$ \frac{(2x)^4 \cdot 2^{-1}}{8a^2}= \frac{2^4 \cdot a^4 \cdot 2^{-1}}{2^3 \cdot a^2} = 2^{4-1-3} \cdot a^{4-2} = a^2$

Oppgave 5

Man antar at resultatens foreller seg jevnt utover intervallet i den enkelte klasse.

Poeng Antall spillere, f Klassemidtpunkt x $ x \cdot f $
[0, 40> 60 20 1200
[40, 80> 20 60 1200
[80, 120> 16 100 1600
[120, 180> 4 150 600
Total 100 4600

Oppgave 6

Synnøve sykkler 6 km. Det bruker hun 20 munutter på, inkludert en pause på 4 minutter. Først sykkler hun, med jevn fart, 2 kilometer på 6 minutter. Det gir en fart på 20 km/h. (. ganger begge med 10) Hun har pause fra 6 til 10 minutter ute i turen. De siste 10 minuttene sykkler hun 4 km. med jevn hastighet. Om man ganger begge størrelsene med 6 finner man at dette gir en hastighet på 24 km/h.

Oppgave 7

Oppgave 8

500 liter

2% forsvinner hvert år.

a)

Etter 12 år vil det være igjen:

$Igjen (12 )= 500 \cdot 0,98^{12}$ liter.

b)

Det som har fordampet er forskjellen mellom det som var ved starten, og det som er igjen etter 20 år.

$Fordampet(20)= 500 - 500 \cdot 0,98^{20} $ liter


c)

2% av det som til enhver tid befinner seg på tønnen fordamper hvert år. Det første året fordamper 10 liter, da er det 490 liter igjen. 2% av 490 er mindre enn 10. Slik vil et stadig mindre og mindre volum fordampe, fordi det alltid er 2% av noe som blir mindre og mindre. Det vil være mere på tønna enn 250 liter etter 25 år.

Oppgave 9

DEL TO

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6