1T 2014 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 34: Linje 34:
==Oppgave 5:==
==Oppgave 5:==


$\left[2x-3y=-7 \\ 3x-y=7 \right] \\ [ y=3x-7 \\ 2x -3(3x-7) = -7 \\ 2x-9x + 21 = -7 \\ - 7x = - 28 \\ x= 4 $
$\left[2x-3y=-7 \\ 3x-y=7 \right] \\ [ y=3x-7 \\ 2x -3(3x-7) = -7\\ 2x-9x + 21 = -7 \\ - 7x = - 28 \\ x= 4 \\ 3x-y=7 \\ 12 - y =7 y=5
 
x = 4 \wee y = 5 $


==Oppgave 6:==
==Oppgave 6:==

Sideversjonen fra 29. sep. 2014 kl. 08:28

Oppgaven som pdf

Tråd om denne oppgaven på Matteprat

Enda en tråd om denne oppgaven på Matteprat

Løsning laget av Nebu


DEL EN

Oppgave 1:

$2,5 \cdot 10^{15} \cdot 3,0 \cdot 10^{-5} = 7,5 \cdot 10^{15+(-5)} = 7,5 \cdot 10^{10}$

Oppgave 2:

$9^{ \frac12}\cdot 6^0 \cdot 4^{-1} \cdot \sqrt[3]{8^2} = \\ (3^2)^{\frac12} \cdot 1 \cdot \frac 14 \cdot \sqrt[3]{2^6} = \\ \frac34 \cdot 2^2 = 3$


Oppgave 3:

$2^{2-x} \cdot 2^{1+2x} =32 \\ 2^{2-x+1+2x} = 2^5 \\ 3+x=5 \\ x=2$

Oppgave 4:

$x^2 +8x +c \\$ Vi har at $a^2 +2ab +b^2 = (a+b)^2$

Dvs: c = $4^2 = 16$

Oppgave 5:

$\left[2x-3y=-7 \\ 3x-y=7 \right] \\ [ y=3x-7 \\ 2x -3(3x-7) = -7] \\ 2x-9x + 21 = -7 \\ - 7x = - 28 \\ x= 4 \\ 3x-y=7 \\ 12 - y =7 y=5

x = 4 \wee y = 5 $

Oppgave 6:

$\frac {6}{x-3} - \frac {5x+15}{x^2-9}+ 1= \\ \frac{6}{x-3} - \frac {5(x+3)}{(x+3)(x-3)}+ \frac {x-3}{x-3} = \\ \frac {6-5+ x - 3 }{x-3}= \\ \frac {x-2}{x-3}$

Oppgave 7:

Oppgave 8:

Oppgave 9:

Oppgave 10: