R1 2013 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 42: Linje 42:
==Oppgave 6==
==Oppgave 6==


$f(x)= x^3+6x^2-2 \\  f ' (x)= 3x^2 + 12x \\ f '' (x) = 6x+12 $
$ f(x)= x^3+6x^2-2 \\  f ' (x)= 3x^2 + 12x \\ f '' (x) = 6x+12 $


==Oppgave 6==
==Oppgave 6==


==Oppgave 7==
==Oppgave 7==

Sideversjonen fra 2. jan. 2014 kl. 10:06

Eksamensoppgaven som pdf

Diskusjon av denne oppgaven

Løsningsforslag som pdf laget av claes

Oppgave 1

$A(r) = \pi r^2 \\ A'(r) = 2 \pi r \\ V(r) = \frac 43 \pi r^3 \\ V'(r) = 4 \pi r^2$


Oppgave 2

a)

$g(x)=3 \ln(x^2 -1) \\ g'(x)= 3 \cdot \frac{1}{x^2-1} \cdot 2x = \frac{6x}{x^2-1}$

b)

$h(x)= \frac{2x^2}{e^x} \\ h'(x) = \frac{4x \cdot e^x-2x^2e^x}{(e^x)^2} = \frac{2x(2-x)}{e^x}$

Oppgave 3

a)

$P(x)= x^3-6x^2+11x-6 \\ P(1)= 1^3 - 6 \cdot 1^2 + 11 \cdot 1 -6 =0$

b)

$ \quad( x^3-6x^2+11x-6) : (x-1) =x^2 - 5x + 6\\ -(x^3 -x^2) \\ \quad \quad -5x^2 \\ \quad \quad -(-5x^2 +5x) \\ \quad \quad \quad \quad \quad \quad 6x-6$

Oppgave 4

$\ln(a^2b)-2 \ln a - \ln(\frac 1b) \\ = 2 \ln a + \ln b -2 \ln a - \ln 1 + \ln b \\= 2 \ln b$

Oppgave 5

f er kontinuerlig for $x \in <-1, 4>$

f er deriverbar for $x \in <-1, 2> \cup <2,4>$

Oppgave 6

$ f(x)= x^3+6x^2-2 \\ f ' (x)= 3x^2 + 12x \\ f (x) = 6x+12 $

Oppgave 6

Oppgave 7