R1 2013 høst LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 14: | Linje 14: | ||
===c)=== | ===c)=== | ||
$h(x)= \frac {2x-1}{x+1} \\ h´(x) = \frac{2(x+1) - (2x-1)}{(x+1)^2} \\ h´(x) = \frac {3}{(x+1)^2} $ | |||
==Oppgave 2:== | ==Oppgave 2:== |
Sideversjonen fra 2. jan. 2014 kl. 02:59
Matteprat: Diskusjon omkring denne oppgaven
DEL EN
Oppgave 1:
a)
$f(x) = 2e^{3x} \\ f´(x) = 2(3x)´e^{3x} = 6e^{3x}$
b)
$g(x) = 2x \cdot \ln(3x) \\ g´(x) = 2 ln(3x) + 2x \cdot \frac{1}{3x} \cdot (3x)´ \\ g´(x) = 2( \ln(3x)+1)$
c)
$h(x)= \frac {2x-1}{x+1} \\ h´(x) = \frac{2(x+1) - (2x-1)}{(x+1)^2} \\ h´(x) = \frac {3}{(x+1)^2} $