2P 2013 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 46: Linje 46:
==b)==
==b)==
==c)==
==c)==
=Opphave 6=
=Oppgave 6=
<table width=0>
    <tr>
        <td>Lommepenger ( kroner)</td>
        <td>Antall elever xm</td>
        <td>Klassemidpunktf</td>
        <td>Klassesum fxm</td>
    </tr>
    <tr>
        <td>[300,400</td>
        <td>350</td>
        <td>20</td>
        <td>7000</td>
    </tr>
    <tr>
        <td>[400,500</td>
        <td>450</td>
        <td>20</td>
        <td>9000</td>
    </tr>
    <tr>
        <td>[500,700</td>
        <td>600</td>
        <td>10</td>
        <td>6000</td>
    </tr>
    <tr>
        <td> </td>
        <td> </td>
        <td>N=50</td>
        <td>S=22000</td>
    </tr>
</table>
 
=Oppgave 7=
=Oppgave 7=



Sideversjonen fra 30. nov. 2013 kl. 08:12

DEL EN

Oppgave 1

Rangerer verdiene i stigende rekefølge:

0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 7, 11, 28, 32

a)

Median: Det er 20 verdier. Median blir da gjennomsnittet av verdi nr. 10 og nr. 11. Begge disse verdiene er 2, så median er 2.


Gjennomsnitt =0+0+0+0+0+0+1+1+1+2+2+2+3+3+3+4+7+11+28+3220=10020=5


Typetall: Det er fles elever (6) med null dagers fravær. 0 er derfor typetallet.

b)

Vi ser at 4 av 20 elever bidrar betydelig til å trekke opp gjennomsnittet. 12 elever har et fraver på median eller lavere. Det er derfor naturlig å bruke median som sentralmål.

Oppgave 2


3,21084,0103=3,24,0108+(3)=12,8105=1,28106

Oppgave 3

a)

(22)344=26(22)4=26+822=4

b)

(32)2(23)2316=3226312223=3211263=23=8

Oppgave 4

P(t)=2000001,0465tP(5)=2000001,04655

P(t) er et uttrykk for sparepengene etter t år. 200 000 er innskuddet, 1,0465 er vekstfaktoren, og t er tiden i år, i dette tillfellet 5.

Oppgave5

a)

b)

c)

Oppgave 6

Lommepenger ( kroner) Antall elever xm Klassemidpunktf Klassesum fxm
[300,400 350 20 7000
[400,500 450 20 9000
[500,700 600 10 6000
N=50 S=22000

Oppgave 7


f(x)=3000000,9x


Vekstfaktoren er 0,9 hvilket betyr at noe avtar med 10% per tidsperiode (sek, min, dager, måneder, år, etc). Startverdien er 300 000. Dersom du kjøper en en motorbåt til 300 000 kroner er det ikke usannsynlig at den får et verditap på 10% per år. Da kan denne modellen brukes.

Oppgave 8

a)

b)

c)

DEL TO