Derivasjonsregler: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Daofeishi (diskusjon | bidrag)
Ingen redigeringsforklaring
Linje 1: Linje 1:
==Generelle Regler==
Kjerneregel, addisjon av funksjoner, multiplikasjon av funksjoner
==Derivater for spesielle funksjoner==
Konstant, Potenser, eksponentialer, trigonometriske funksjoner, hyperbolske trig. funksjoner, logaritmer
Nedenfor følger en oversikt over de vanligste derivasjonsreglene for funksjoner med en [[variabel]].<p>
Nedenfor følger en oversikt over de vanligste derivasjonsreglene for funksjoner med en [[variabel]].<p>
<table border="1" cellpadding="10">
<table border="1" cellpadding="10">

Sideversjonen fra 3. mar. 2009 kl. 07:14

Generelle Regler

Kjerneregel, addisjon av funksjoner, multiplikasjon av funksjoner

Derivater for spesielle funksjoner

Konstant, Potenser, eksponentialer, trigonometriske funksjoner, hyperbolske trig. funksjoner, logaritmer

Nedenfor følger en oversikt over de vanligste derivasjonsreglene for funksjoner med en variabel.

TYPE FUNKSJON DERIVERT
Potenser
f(x) = xn f '(x) = nxn-1
Konstant multiplisert
med funksjon
c f(x) [c f(x)]' = c f '(x)
Konstant f(x)= C C' = 0
Polynom f(x) = g(x)+ h(x) +... f '(x) = g'(x) + h'(x) +...
Eksponentialfunksjonen ax f (x) = ax f '(x) = axln a
Eksponentialfunksjonen ex f (x) = ex f '(x) = ex
Produkt
Bevis
f(x)<tex>\cdot</tex>g(x) [f(x)<tex>\cdot</tex>g(x)]'= f '(x)<tex>\cdot</tex>g(x)+ f(x)<tex>\cdot</tex>g '(x)
Sinus f(x) = sin x f'(x) = cos x
Cosinus f(x) = cos x f'(x) = -sin x
Tangens f (x) = tan x f ' (x)=<tex>\frac{1}{cos^2x}</tex>
Kvotient f (x)=<tex>\frac{g(x)}{h(x)}</tex> f ' (x)=<tex>\frac{g ' (x)\cdot h(x)- g(x)\cdot h ' (x)}{(h(x))^2}</tex>
Kjerneregel y = g(u)
u er en funksjon av x
y ' = g ' (u)∙u'
Logaritme funksjonen f(x) = ln |x| f ' (x)=<tex>\frac{1}{x}</tex>
Kvadratrot f(x)=<tex>\sqrt{x}</tex> f ' (x)=<tex>\frac{1}{2\sqrt{x}}</tex>
Nte'rot f(x)=<tex>\sqrt[m]{x^n}=x^{\frac{n}{m}}</tex> Se potensfunksjon</tex>