R1 2012 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 99: Linje 99:
==a)==
==a)==


$AB = \vec v \\ AD = \vec u \\ AC = \vec u + \vec v \\ BD = \vec u - \vec v \\  \vec{AC} \cdot \vec{BD }= (\vec u + \vec v )  \cdot (\vec u - \vec v ) \\ \vec {u^2} - \vev^2c =0$
$AB = \vec v \\ AD = \vec u \\ AC = \vec u + \vec v \\ BD = \vec u - \vec v \\  \vec{AC} \cdot \vec{BD }= (\vec u + \vec v )  \cdot (\vec u - \vec v ) \\ \vec {u^2} - \vec{^2c} =0$


Siden skalarproduktet mellom vektorene er null, står de vinkelrett på hverandre.
Siden skalarproduktet mellom vektorene er null, står de vinkelrett på hverandre.

Sideversjonen fra 27. okt. 2013 kl. 17:08

Diskusjon av denne oppgaven

Del 1

Oppgave 1

a)

$f(x)=(2x-1)^2 = 4x^2-4x+1$

Da er

<math>f^\prime(x)=8x-4</math>

Alternativt kan vi benytte kjerneregelen med $2x-1$ som kjerne. Vi får da

$f^\prime(x) = 2(2x-1) \cdot (2x-1)^\prime = 2 \cdot (2x-1) \cdot 2 = 8x - 4$.

b)

<math>g(x)=\sqrt{x^2-2x}</math>

Vi bruker kjerneregelen med <math>x^2 - 2x</math> som kjerne. Da har vi

<math>\begin{eqnarray*} g(x) &=&\frac{1}{2\sqrt{x^2 - 2x}} \cdot (x^2 - 2x)^\prime = \frac{1}{2\sqrt{x^2 - 2x}} \cdot (2x-2) \\ &=& \frac{x-1}{\sqrt{x^2-2x}}\end{eqnarray*}</math>

c)

Her har vi et produkt av flere faktorer som avhenger av $x$. Da benytter vi produktregelen. For å derivere $e^{3x}$ bruker vi også kjerneregelen. Vi får

$h^\prime(x) = (x^3)^\prime \cdot e^{2x} + x^3 \cdot (e^{2x})^\prime = 3x^2 e^{2x} + x^3 \cdot 2e^{2x} = x^2e^{2x}(3x+2).$

Oppgave 2

a)

En polynomdivisjon $p(x) : (x-a)$ går opp kun dersom $p(a) = 0$. Her får vi da at $f(3)$ må være 0. Det gir oss ligningen

$f(3) = 0 \ \Leftrightarrow \ 3^3 - 3 \cdot 3^2 + k \cdot 3 + 3 = 0 \ \Leftrightarrow \ 3k + 3 = 0 \ \Leftrightarrow \ k = -1.$

b)

Svaret på polynomdivisjon = <math>x^2-1</math>

Dette gir oss førstegradsfaktorer i (x-1)(x+1)(x-3)

Oppgave 3

a)

Vendepunkt har vi der den dobbeltderiverte er 0 og skifter fortegn. Vi har her

<math>f(x)=x^3-3x^2-x+3</math>

<math>f^\prime(x)=3x^2-6x-1</math>

<math>f^{\prime\prime}(x)=6x-6 = 6(x-1)</math>

Den dobbeltderiverte er null for x = 1. Vendepunkt: (1, f(1)) = (1, 0)

b)

Likning for vendetangent: f ' (1) = - 4

y = ax + b

Har punktet (1, 0) og setter inn:

$0 = -4 \cdot 1 +b \\ b = 4 $

Dvs: y = -4x + 4

Oppgave 4

a)

x = 1 er en løsning av likningen. Elven mister en løsning ved ikke å sjekke faktoren (x-1) lik null.

b)

For å finne skjæringspunktet må man sette $f(x)=g(x)$

$(x-1)(x-3)=x-1$

<math>x^2-4x+3=x-1</math> => <math>x^2-5x+4=0</math>, deretter bruker man ABC-formelen for å finne nullpunktene.

Nullpunktene er; $x=4$ og $x=1$

For å finne skjæringspunktene setter man $f(4)$ og $g(1)$. Da finner man en y-verdi. $f(4)=(4-1)(4-3)$ $f(4)=3$, noe som betyr at $y=3$

$g(1)=1-1=0$, noe som betyr at $y=0$.

Skjæringspunktene ligger i punktene $(4,3)$ og $(1,0)$

Oppgave 5

a)

$AB = \vec v \\ AD = \vec u \\ AC = \vec u + \vec v \\ BD = \vec u - \vec v \\ \vec{AC} \cdot \vec{BD }= (\vec u + \vec v ) \cdot (\vec u - \vec v ) \\ \vec {u^2} - \vec{^2c} =0$

Siden skalarproduktet mellom vektorene er null, står de vinkelrett på hverandre.

b)

Oppgave 6

a)

$3^{4x}+7=34 \\ 3^{4x}=27 \\ 3^{4x}=3^3 \\ lg3^{4x}= lg3^3 \\ 4x = 3 \\ x = \frac 34 $

b)

$lg(x) + lg (x-1) = lg 2 \quad x>1 \\ lg(x^2-x)= lg2 \\ x^2-x = 2 \\ x^2 - x - 2 =0 \\ x =\frac{1 \pm \sqrt{1+8}}{2} \\ x= -1 \vee x=2 $

Oppgave 7

a)

b)

DEL 2

Oppgave 1

==Oppgave 2 ==a) Jente og buss

P(J∩B)=94350=47175≈0.26857

b) Sannsynlighet for for sent

P(B)=71+94350=165350=22⋅16.535=3370≈0.47143

Anta eleven er jente, hva er sannsynligheten for at ei jente kommer for sent?

P(B)≠P(B∣J)=94168=4784≈0.55952

Nei, hendelsene er ikke uavhengige.

c) Anta elev er kommer for sent, hva er sannsynligheten for at eleven er jente?

9494+71=94165≈0.56970

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6