Brøkregning: Forskjell mellom sideversjoner
(57 mellomliggende versjoner av 4 brukere er ikke vist) | |||
Linje 1: | Linje 1: | ||
[https://sites.google.com/view/brokregning/start?authuser=0 En student ved Pedagogisk bruk av IKT ved Høgskolen i Østfold har laget en flott remediering av denne siden ] | |||
== Innledning == | == Innledning == | ||
En brøk består av tre elementer, teller, brøkstrek og nevner. | En '''brøk''' består av tre elementer, ''teller'', ''brøkstrek'' og ''nevner''. | ||
[[Bilde:brok2.PNG]]< | |||
[[Bilde:brok2.PNG]] | |||
Brøkstreken betyr det samme som deletegn. En brøk er en del av noe. Hvor stor del kommer an på teller og nevner. Nevneren forteller hvor mange deler helheten er delt opp i. | |||
<br> | |||
==Hvorfor trenger vi brøk?== | |||
<br> | |||
''' En brøk kan angi en del av noe''' | |||
Vi har tall som er mindre enn en enhet. En halv liter melk forteller noe om mengden i forhold til enheten liter melk. | |||
<br> | |||
'''En brøk kan være svaret på et delestykke''' | |||
'' | |||
Deler du samme pizza opp i åtte like stykker blir stykkene havparten så store som når du deler den i fire. Om du spiser to stykker når pizzaen er delt i åtte, er det likeverdig med å spise et stykke når pizzaen er delt i fire. Slik kan vi fortsett. Det kalles å utvide brøken. | Når vi deler et tall på et annet kan vi få et svar som blir mindre enn en: | ||
$ 10 :30 = \frac {10}{30} = \frac 13$ | |||
Svaret over er pent og helt nøyaktig. Dersom du bruker kalkulator får du 0,333333...., som ikke er pent og ikke helt nøyaktig. | |||
Tall som er større enn en kan også skrives som brøk. Da vil teller være større enn nevner: | |||
$15 : 10 = \frac{15}{10}$ som kan skrives som $\frac 32$ når man faktoriserer ut 5 og forkorter. brøken tre halve er det samme som 1,5 på formen desimaltall. | |||
<br> | |||
'''Brøk kan brukes til å sammenlikne mengder eller størrelser''' | |||
Per fikk fire fisk, og Pål fikk seks fisk. Hvordan kan vi sammenligne fangsten til Per og Pål? Her må vi tenke om vi skal sammenlikne Per med Pål, eller Pål med Per. | |||
Vi har bare kunnskap om antallet fisk og ingen informasjon om størrelsen på fiskene. | |||
Vi sammenlikner Per med Pål: $\frac 46 = \frac 23$. Per fikk to trededeler så mange fisk som Pål. | |||
Vi sammenlikner Pål med Per: $\frac 64 = \frac 32$. Pål fikk 3/2 så mye fisk som Per, eller en og en halv gang så mye. Legg merke til at det vi sammenligner mot alltid skal i teller. | |||
<br> | |||
'''Brøk kan brukes ved deling i like store biter''' | |||
Figuren under til venstre kan representere en brøk som angir "del av noe", fordi alle bitene er like store. Dersom to personer får en bit hver har begge fått like stor mengde, $\frac{1}{18}$. | |||
[[Bilde:like_biter.PNG]] | |||
Figuren til høyre består også av atten biter, men her er bitene av forskjellig størrelse. Denne figuren kan ikke brukes til å representere en brøk som angir "del av mengde". | |||
Dersom to personer får en bit hver har de trolig fått forskjellig mengde av figuren. Denne kan representere antall fisk i eksempelet over. | |||
[[Bilde:storrelse.PNG]] | |||
Dersom man får fem biter sjokolade av sjokolade 1 har man fått $\frac{5}{18}$ av sjokolade 1. Dersom man får fem biter av sjokolade 2 har man fått $\frac{5}{18}$ av sjokolade 2. | |||
Brøkene er de samme, men vi observerer at den som har fått fra sjokolade 1 får mest sjokolade, fordi sjokolade 1 er større. Dersom to personer får fem deler hver, fra samme sjokolade, får de like mye begge to. | |||
Deler du en pizza i fire like store biter blir nevneren fire. Spiser du en av bitene, har du spist 1/4 av pizzaen. Telleren sier altså noe om hvor mange av delene i nevneren som "er med på leken". | |||
[[Bilde:pizzaversjon2.PNG]] | |||
: ''Grønn er teller, grønn + grå er nevner'' | |||
Deler du samme pizza opp i åtte like stykker, blir stykkene havparten så store som når du deler den i fire. Om du spiser to stykker når pizzaen er delt i åtte, er det likeverdig med å spise et stykke når pizzaen er delt i fire. | |||
Slik kan vi fortsett. Det kalles å utvide brøken. | |||
<br> | |||
== Å utvide brøken == | == Å utvide brøken == | ||
Om vi holder oss til eksempelet over kan vi skrive det slik: | Om vi holder oss til eksempelet over kan vi skrive det slik: | ||
$\frac{1}{4} = \frac{2}{8} = \frac{4}{16}$ | |||
Det vi egentlig gjør er å multiplisere teller og nevner med samme tall, i dette tilfellet 2. | Det vi egentlig gjør er å multiplisere teller og nevner med samme tall, i dette tilfellet 2. | ||
< | |||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | |||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
\frac{4}{16} | $\frac{1}{4} = \frac{1 \cdot 2}{4 \cdot 2} = \frac{2}{8} = \frac{2 \cdot 2}{8 \cdot 2}= | ||
\frac{4}{16} | |||
$ | |||
<p></p> | <p></p> | ||
</ | </div> | ||
<br> | |||
Vi kan utvide en brøk med både tall og bokstaver, men ''det er viktig at vi gjør det samme i både teller og nevner''. Gjør vi ikke det, vil brøkens verdi endre seg. | |||
<br> | |||
== Å forkorte brøken == | == Å forkorte brøken == | ||
Å forkorte en brøk er det motsatte av å utvide den. Først må vi faktorisere teller og nevner. Se siden om faktorisering dersom du ikke kan det. | Å forkorte en brøk er det motsatte av å utvide den. Først må vi faktorisere teller og nevner. Se siden om [[faktorisering]] dersom du ikke kan det. | ||
< | |||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | |||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
Brøken tolv sekstendeler kan skrives som: | Brøken tolv sekstendeler kan skrives som: | ||
$\frac{12}{16} = \frac {2 \cdot 2 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 2} = \frac{3}{4}$ | |||
< | </div> | ||
<br> | |||
Når vi forkorter 2-tallene i teller og nevner må vi huske på at de erstattes med tallet 1. De går ikke an å få null i teller eller nevner når vi forkorter på denne måten. | |||
Også her er det viktig at vi gjør det samme i både teller og nevner. | |||
<br> | |||
== Blandet tall eller "uekte brøk"== | |||
Et blandet tall består av et heletall og en brøk. En uekte brøk er ekte nok, betegnelsen brukes om brøker som er større enn en. Det betyr at teller er større enn nevner. | |||
= | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | ||
'''Eksempel:''' | |||
$1\frac14$ | |||
[[Bilde:brok3.PNG]] | [[Bilde:brok3.PNG]] | ||
Dette blandede tallet består av en hel og en fjerdedel. Det kan illustreres med figuren over. | Dette blandede tallet består av en hel og en fjerdedel. Det kan illustreres med figuren over. | ||
</div> | |||
<br> | |||
== Addisjon og subtraksjon == | == Addisjon og subtraksjon == | ||
<br> | |||
=== Når nevner er den samme === | === Når nevner er den samme === | ||
Når | Når nevneren i to eller flere brøker skal trekkes sammen legger vi sammen tellerene (eller trekker fra), og beholder nevneren slik den er. | ||
[[Bilde:likenevnere.PNG]] | |||
<p></p> | <p></p> | ||
< | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | ||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
$ \frac 27 + \frac 37 = \frac{2+3}{7}= \frac 57 $ | |||
</div> | |||
< | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | ||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
$\frac 35 - \frac 25 = \frac{3-2}{5}= \frac 15 $ | |||
< | |||
</div> | |||
<br> | |||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=AFD%2BAFE%2BAFF%2BB00%2BB01%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | [http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=AFD%2BAFE%2BAFF%2BB00%2BB01%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | ||
<br> | |||
=== Når nevner er forskjellig === | === Når nevner er forskjellig === | ||
<div style="padding: 1em; border: 1px blue; background-color: #FFFF66 ;"> | |||
:[https://www.youtube.com/watch?v=QD5VxfWduKI Video eksempel] | |||
</div> | |||
Når man skal legge sammen eller trekke fra to eller flere brøker med forskjellig nevner, må man først finne fellesnevner. | Når man skal legge sammen eller trekke fra to eller flere brøker med forskjellig nevner, må man først finne fellesnevner. | ||
<p></p> | <p></p> | ||
< | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | ||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
$ \frac 13 + \frac 12 = \frac{1 \cdot 2}{3 \cdot 2}+ \frac {1 \cdot 3}{2 \cdot 3 } = \frac 26 + \frac {3}{6} = \frac 56 $ | |||
</div> | |||
<p></p> | |||
Vi finner nevnerens minste felles multiplum, det minste tallet som begge nevnerene går opp i. Det minste tallet både to og tre går opp i er seks. Dette er et eksempel på nødvendigheten av å kunne utvide brøker. | |||
<br> | |||
<div style="padding: 1em; border: 1px blue; background-color: #FFFF66 ;"> | |||
:[https://youtu.be/Zj9-qbqDUIc '''Video eksempel'''] | |||
</div> | |||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=B02%2BB03%2BB04%2BB05%2BB06%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | [http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=B02%2BB03%2BB04%2BB05%2BB06%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | ||
<br> | |||
== Multiplikasjon == | == Multiplikasjon == | ||
<br> | |||
=== Brøk med brøk === | === Brøk med brøk === | ||
Når to brøker skal multipliseres (ganges) med hverandre, multipliserer vi teller med teller og nevner med nevner. | |||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | |||
< | |||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
$\frac{2}{5} \cdot \frac{3}{4} = \frac {2 \cdot 3}{5 \cdot 4} = \frac{6}{20} = \frac {3}{10}$ | |||
<p></p> | |||
</div> | |||
< | <br> | ||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=B07%2BB08%2BB09%2BB0A%2BB0B%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | |||
<br> | |||
=== Heltall med brøk === | === Heltall med brøk === | ||
Vi multipliserer heltallet i teller og beholder nevner. | Vi multipliserer heltallet i teller og beholder nevner. | ||
< | |||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | |||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
$ 3 \cdot \frac{2}{7} = \frac {3 \cdot 2}{7}= \frac 67 $ | |||
<p></p> | |||
</div> | |||
< | <br> | ||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=88E%2B88F%2B890%2B891%2B892%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | |||
<br> | |||
== Divisjon == | == Divisjon == | ||
<div style="padding: 1em; border: 1px blue; background-color: #FFFF66 ;"> | |||
:[https://youtu.be/oU30EuCagnc Video eksempel] | |||
</div> | |||
< | Når to brøker skal divideres (deles) med hverandre, snur vi den siste brøken (divisor) og multipliserer utrykket. Med snu menes at vi bytter om teller og nevner. | ||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | |||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
$\frac{3}{4}:\frac{1}{2} = \frac{3}{4} \cdot \frac{2}{1} = \frac{3 \cdot 2}{4 \cdot 1}= \frac 64 = \frac 32 $ | |||
<p></p> | |||
</div> | |||
< | <br> | ||
Hvorfor er det slik? La oss se på et eksempel til: | Hvorfor er det slik? La oss se på et eksempel til: | ||
< | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">'''Eksempel:'''<p></p> | ||
'''Eksempel:'''<p></p> | |||
$ \frac{2}{3}:\frac{4}{7} = \frac{ \frac{2}{3}}{ \frac{4}{7}} = \frac{ \frac{2}{3} \cdot 7}{ \frac{4}{7} \cdot 7} = \frac{ \frac{2 \cdot 7}{3}}{4} = \frac{ \frac{14}{3} \cdot 3}{4 \cdot 3}= \frac{14}{12} = \frac {7}{6} $ | |||
<p></p> | |||
Man obserever at metoden i eksempelet over er mye enklere. Dette eksemplet er bare ment som en forklaring på hvorfor man kan "snu" den siste brøken og gange. | Man obserever at metoden i eksempelet over er mye enklere. Dette eksemplet er bare ment som en forklaring på hvorfor man kan "snu" den siste brøken og gange. | ||
</ | </div> | ||
<br> | |||
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=B11%2BB12%2BB13%2BB14%2BB15%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | [http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=B11%2BB12%2BB13%2BB14%2BB15%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv] | ||
<br> | |||
'''Divisjon med brøk og heltall''' | '''Divisjon med brøk og heltall''' | ||
Man løser problemet ved å gjøre heltallet om til brøk | Man løser problemet ved å gjøre heltallet om til brøk og ved å bruke regelen over. | ||
< | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | ||
'''Eksempel:'''<p></p> | '''Eksempel:'''<p></p> | ||
</ | $ \frac{2}{3}: 2 = \frac 23:\frac 21 = \frac 23 \cdot \frac 12 = \frac 26 = \frac 13 $ | ||
<p></p> | |||
$3: \frac 17 = \frac 31:\frac 17 = \frac 31 \cdot \frac 71 = \frac {21}1 = 21 $ | |||
<p></p> | |||
</div> | |||
<br> | |||
== Null i teller == | == Null i teller == | ||
Dersom telleren er null er brøkens verdi lik null. | Dersom telleren er null er brøkens verdi lik null. | ||
$\frac 01 = \frac 02 = \frac 03 = \ldots = \frac 0n = 0 $ | |||
<p></p> | <p></p> | ||
der $n$ er forskjellig fra null. | |||
<br> | |||
== Null i nevner == | == Null i nevner == | ||
Det er ikke mulig å få null i nevneren til en brøk. Dersom du har fått det har du regnet feil. | Det er ikke mulig å få null i nevneren til en brøk. Dersom du har fått det, har du regnet feil. | ||
<br> | |||
== Teller og nevner like store == | == Teller og nevner like store == | ||
Når teller og nevner er like store er brøkens verdi lik en. | |||
$\frac 11 = \frac 22 = \frac 33 = \ldots = \frac nn = 1 $ | |||
<p></p> | <p></p> | ||
der $n$ er forskjellig fra null. | |||
<br> | |||
== Fra heltall til brøk == | == Fra heltall til brøk == | ||
Et hvilket som helst heltall kan gjøres om til en brøk med en hvilken som helst nevner. | |||
[[Bilde:hele tall.PNG]] | |||
Et heltall gjøres om til brøk slik: | |||
$ 1= \frac 11 = \frac22 = \frac33 = \ldots $ | |||
<p></p> | <p></p> | ||
Eller slik: | Eller slik: | ||
$ 4= \frac 41 = \frac82 = \frac{12}{3} = \ldots $ | |||
Du skriver fire som fire en-deler. Så utvider du brøken slik at du får den nevneren du ønsker. Ønsker du brøken i syvdeler multipliserer du både fire og en med syv og får $\frac{28}{7}$. | |||
---- | ---- | ||
[http://www.matematikk.net/ressurser/oppgaver/broekmaskinen/index.php PRØV DEG SELV I BRØKREGNING] | [http://www.matematikk.net/ressurser/oppgaver/broekmaskinen/index.php PRØV DEG SELV I BRØKREGNING] | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
[[Category:U - trinn]] [[Category:Ped]] | [[Category:U - trinn]] [[Category:Ped]][[Category: 1P]][[Kategori:lex]] | ||
[[Kategori:lex]] |
Siste sideversjon per 20. apr. 2023 kl. 08:39
Innledning
En brøk består av tre elementer, teller, brøkstrek og nevner.
Brøkstreken betyr det samme som deletegn. En brøk er en del av noe. Hvor stor del kommer an på teller og nevner. Nevneren forteller hvor mange deler helheten er delt opp i.
Hvorfor trenger vi brøk?
En brøk kan angi en del av noe
Vi har tall som er mindre enn en enhet. En halv liter melk forteller noe om mengden i forhold til enheten liter melk.
En brøk kan være svaret på et delestykke
Når vi deler et tall på et annet kan vi få et svar som blir mindre enn en:
$ 10 :30 = \frac {10}{30} = \frac 13$
Svaret over er pent og helt nøyaktig. Dersom du bruker kalkulator får du 0,333333...., som ikke er pent og ikke helt nøyaktig.
Tall som er større enn en kan også skrives som brøk. Da vil teller være større enn nevner:
$15 : 10 = \frac{15}{10}$ som kan skrives som $\frac 32$ når man faktoriserer ut 5 og forkorter. brøken tre halve er det samme som 1,5 på formen desimaltall.
Brøk kan brukes til å sammenlikne mengder eller størrelser
Per fikk fire fisk, og Pål fikk seks fisk. Hvordan kan vi sammenligne fangsten til Per og Pål? Her må vi tenke om vi skal sammenlikne Per med Pål, eller Pål med Per. Vi har bare kunnskap om antallet fisk og ingen informasjon om størrelsen på fiskene.
Vi sammenlikner Per med Pål: $\frac 46 = \frac 23$. Per fikk to trededeler så mange fisk som Pål.
Vi sammenlikner Pål med Per: $\frac 64 = \frac 32$. Pål fikk 3/2 så mye fisk som Per, eller en og en halv gang så mye. Legg merke til at det vi sammenligner mot alltid skal i teller.
Brøk kan brukes ved deling i like store biter
Figuren under til venstre kan representere en brøk som angir "del av noe", fordi alle bitene er like store. Dersom to personer får en bit hver har begge fått like stor mengde, $\frac{1}{18}$.
Figuren til høyre består også av atten biter, men her er bitene av forskjellig størrelse. Denne figuren kan ikke brukes til å representere en brøk som angir "del av mengde". Dersom to personer får en bit hver har de trolig fått forskjellig mengde av figuren. Denne kan representere antall fisk i eksempelet over.
Dersom man får fem biter sjokolade av sjokolade 1 har man fått $\frac{5}{18}$ av sjokolade 1. Dersom man får fem biter av sjokolade 2 har man fått $\frac{5}{18}$ av sjokolade 2. Brøkene er de samme, men vi observerer at den som har fått fra sjokolade 1 får mest sjokolade, fordi sjokolade 1 er større. Dersom to personer får fem deler hver, fra samme sjokolade, får de like mye begge to.
Deler du en pizza i fire like store biter blir nevneren fire. Spiser du en av bitene, har du spist 1/4 av pizzaen. Telleren sier altså noe om hvor mange av delene i nevneren som "er med på leken".
- Grønn er teller, grønn + grå er nevner
Deler du samme pizza opp i åtte like stykker, blir stykkene havparten så store som når du deler den i fire. Om du spiser to stykker når pizzaen er delt i åtte, er det likeverdig med å spise et stykke når pizzaen er delt i fire. Slik kan vi fortsett. Det kalles å utvide brøken.
Å utvide brøken
Om vi holder oss til eksempelet over kan vi skrive det slik:
$\frac{1}{4} = \frac{2}{8} = \frac{4}{16}$
Det vi egentlig gjør er å multiplisere teller og nevner med samme tall, i dette tilfellet 2.
$\frac{1}{4} = \frac{1 \cdot 2}{4 \cdot 2} = \frac{2}{8} = \frac{2 \cdot 2}{8 \cdot 2}= \frac{4}{16} $
Vi kan utvide en brøk med både tall og bokstaver, men det er viktig at vi gjør det samme i både teller og nevner. Gjør vi ikke det, vil brøkens verdi endre seg.
Å forkorte brøken
Å forkorte en brøk er det motsatte av å utvide den. Først må vi faktorisere teller og nevner. Se siden om faktorisering dersom du ikke kan det.
Brøken tolv sekstendeler kan skrives som:
$\frac{12}{16} = \frac {2 \cdot 2 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 2} = \frac{3}{4}$
Når vi forkorter 2-tallene i teller og nevner må vi huske på at de erstattes med tallet 1. De går ikke an å få null i teller eller nevner når vi forkorter på denne måten. Også her er det viktig at vi gjør det samme i både teller og nevner.
Blandet tall eller "uekte brøk"
Et blandet tall består av et heletall og en brøk. En uekte brøk er ekte nok, betegnelsen brukes om brøker som er større enn en. Det betyr at teller er større enn nevner.
Eksempel:
$1\frac14$
Dette blandede tallet består av en hel og en fjerdedel. Det kan illustreres med figuren over.
Addisjon og subtraksjon
Når nevner er den samme
Når nevneren i to eller flere brøker skal trekkes sammen legger vi sammen tellerene (eller trekker fra), og beholder nevneren slik den er.
$ \frac 27 + \frac 37 = \frac{2+3}{7}= \frac 57 $
$\frac 35 - \frac 25 = \frac{3-2}{5}= \frac 15 $
Når nevner er forskjellig
Når man skal legge sammen eller trekke fra to eller flere brøker med forskjellig nevner, må man først finne fellesnevner.
$ \frac 13 + \frac 12 = \frac{1 \cdot 2}{3 \cdot 2}+ \frac {1 \cdot 3}{2 \cdot 3 } = \frac 26 + \frac {3}{6} = \frac 56 $
Vi finner nevnerens minste felles multiplum, det minste tallet som begge nevnerene går opp i. Det minste tallet både to og tre går opp i er seks. Dette er et eksempel på nødvendigheten av å kunne utvide brøker.
Multiplikasjon
Brøk med brøk
Når to brøker skal multipliseres (ganges) med hverandre, multipliserer vi teller med teller og nevner med nevner.
$\frac{2}{5} \cdot \frac{3}{4} = \frac {2 \cdot 3}{5 \cdot 4} = \frac{6}{20} = \frac {3}{10}$
Heltall med brøk
Vi multipliserer heltallet i teller og beholder nevner.
$ 3 \cdot \frac{2}{7} = \frac {3 \cdot 2}{7}= \frac 67 $
Divisjon
Når to brøker skal divideres (deles) med hverandre, snur vi den siste brøken (divisor) og multipliserer utrykket. Med snu menes at vi bytter om teller og nevner.
$\frac{3}{4}:\frac{1}{2} = \frac{3}{4} \cdot \frac{2}{1} = \frac{3 \cdot 2}{4 \cdot 1}= \frac 64 = \frac 32 $
Hvorfor er det slik? La oss se på et eksempel til:
$ \frac{2}{3}:\frac{4}{7} = \frac{ \frac{2}{3}}{ \frac{4}{7}} = \frac{ \frac{2}{3} \cdot 7}{ \frac{4}{7} \cdot 7} = \frac{ \frac{2 \cdot 7}{3}}{4} = \frac{ \frac{14}{3} \cdot 3}{4 \cdot 3}= \frac{14}{12} = \frac {7}{6} $
Man obserever at metoden i eksempelet over er mye enklere. Dette eksemplet er bare ment som en forklaring på hvorfor man kan "snu" den siste brøken og gange.
Divisjon med brøk og heltall
Man løser problemet ved å gjøre heltallet om til brøk og ved å bruke regelen over.
$ \frac{2}{3}: 2 = \frac 23:\frac 21 = \frac 23 \cdot \frac 12 = \frac 26 = \frac 13 $
$3: \frac 17 = \frac 31:\frac 17 = \frac 31 \cdot \frac 71 = \frac {21}1 = 21 $
Null i teller
Dersom telleren er null er brøkens verdi lik null.
$\frac 01 = \frac 02 = \frac 03 = \ldots = \frac 0n = 0 $
der $n$ er forskjellig fra null.
Null i nevner
Det er ikke mulig å få null i nevneren til en brøk. Dersom du har fått det, har du regnet feil.
Teller og nevner like store
Når teller og nevner er like store er brøkens verdi lik en.
$\frac 11 = \frac 22 = \frac 33 = \ldots = \frac nn = 1 $
der $n$ er forskjellig fra null.
Fra heltall til brøk
Et hvilket som helst heltall kan gjøres om til en brøk med en hvilken som helst nevner.
Et heltall gjøres om til brøk slik:
$ 1= \frac 11 = \frac22 = \frac33 = \ldots $
Eller slik:
$ 4= \frac 41 = \frac82 = \frac{12}{3} = \ldots $
Du skriver fire som fire en-deler. Så utvider du brøken slik at du får den nevneren du ønsker. Ønsker du brøken i syvdeler multipliserer du både fire og en med syv og får $\frac{28}{7}$.