1T 2010 vår LØSNING: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
|||
(17 mellomliggende versjoner av 2 brukere er ikke vist) | |||
Linje 1: | Linje 1: | ||
[http://ndla.no/nb/node/95939?fag=54 Løsning fra NDLA] | |||
[http://folk.ntnu.no/oistes/Eksamen%20-%20VGS/1T/T1%20V10(6).pdf Løsning fra Nebu (pdf)] | |||
= Del 1 = | = Del 1 = | ||
Linje 7: | Linje 10: | ||
[[Fil:2010a1.png]]<p></P> | [[Fil:2010a1.png]]<p></P> | ||
Nullpunkt ved regning:<p></p> | Nullpunkt ved regning:<p></p> | ||
< | <math>f(x) = 0 \\ -2x+3 = 0 \\-2x= -3 \\x= \frac 32</math> | ||
<p></p> Ved inspeksjon ser man at dette stemmer med grafen. | <p></p> Ved inspeksjon ser man at dette stemmer med grafen. | ||
=== b) === | === b) === | ||
< | <math>x^2 + 8x = -15 \\ x^2 +8x + 15 =0 \\ x = \frac{-8 \pm \sqrt{8^2-4 \cdot 1 \cdot 15}}{2 \cdot1} \\x= \frac{-8 \pm 2}{2} \\ x = -5 \vee x=-3</math> | ||
=== c) === | === c) === | ||
< | <math>5 -2^4 \cdot(4-3)^3 \cdot 2^{-3}= \\ 5-16 \cdot 1^3 \cdot \frac 18 =\\ 5- \frac{16}{8} = 3</math> | ||
=== d) === | === d) === | ||
< | <math> \frac{4a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} =\frac{2^2a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} = 2^{2-1}a^{\frac 13 + \frac 12 -(- \frac 16)} = 2 a^{\frac 26 + \frac 36 + \frac 16} = 2a</math> | ||
=== e) === | === e) === | ||
< | <math>f(x)= -2x^3+8x+4 \\ f'(x) = -6x + 8 \\ f'(1) = -6+8=2 \\ f(1) = 10 \\ y= ax+b \\ y=2x+b \\ \text{punktet} \quad (1,f(1)) \Rightarrow 10 = 2 + b \\ b = 8 \\ \text{Likning for tangent:} y=2x+8</math> | ||
=== f) === | === f) === | ||
Linje 26: | Linje 29: | ||
Faktoriserer uttrykket ved hjelp av konjugatsetningen og regelen for faktorisering av fullstendig kvadrat, forkorter deretter uttrykket ved å stryke samme faktorer i teller og nevner: | Faktoriserer uttrykket ved hjelp av konjugatsetningen og regelen for faktorisering av fullstendig kvadrat, forkorter deretter uttrykket ved å stryke samme faktorer i teller og nevner: | ||
< | <math>\frac {x^2-9}{x^2+6x+9}=\frac {(x+3)\cdot (x-3)}{(x+3)(x+3)}=\frac {\cancel{(x+3)}\cdot (x-3)}{\cancel{(x+3)}(x+3)} =\frac {x-3}{x+3}</math> | ||
=== g) === | === g) === | ||
< | <math> \log(2x +4) = 3 \log 2 \Leftrightarrow \log (2x+4)= \log(2^3) \Leftrightarrow 2x+4=2^3 \Leftrightarrow 2x+4=8 \Leftrightarrow 2x=8-4 \Leftrightarrow 2x=4 \Leftrightarrow x= \frac 42 \Leftrightarrow x=2 </math> | ||
=== h) === | === h) === | ||
Linje 38: | Linje 41: | ||
Sannsynligheten for at pilen peker enten på blått eller grønt felt når hjulet stopper er: | Sannsynligheten for at pilen peker enten på blått eller grønt felt når hjulet stopper er: | ||
< | <math> P=P(B)+P(Gr)=\frac 38 + \frac 28 = \frac 58=0,625 =62,5 </math>% | ||
''' 2) ''' | ''' 2) ''' | ||
Linje 44: | Linje 47: | ||
Sannsynligheten for at pilen peker en gang på gult felt og en gang på grønt felt når hjulet snurres to ganger, er: | Sannsynligheten for at pilen peker en gang på gult felt og en gang på grønt felt når hjulet snurres to ganger, er: | ||
< | <math>P(Gul)\cdot P(Gr) +P(Gr)\cdot P(Gul) =\frac 18 \cdot \frac 28 + \frac28 \cdot \frac 18= \frac {4}{64}=\frac {1}{16}</math> | ||
=== i) === | === i) === | ||
Linje 55: | Linje 58: | ||
=== b) === | === b) === | ||
< | <math> g(x) = ax^2+bx+c \\ g(0) = -4 \Rightarrow C= -4 \\ g(x) = ax^2+bx-4 \\ g(2)= 0 \Rightarrow 4a+2b-4=0 \\ g(-2) =0 \Rightarrow 4a-2b-4 =0 </math> <p></p> | ||
Legger sammen de to likningene og får:<p></p> | Legger sammen de to likningene og får:<p></p> | ||
8a-8=0<p></p> | 8a-8=0<p></p> | ||
a=1 | a=1 | ||
Innsatt i 4a + 2b- 4 = 0 <p></p> | Innsatt i 4a + 2b- 4 = 0 <p></p> | ||
Gir b=0, funksjonsuttrykket blir da<p></p> | Gir b=0, funksjonsuttrykket blir da<p></p> | ||
< | <math>g(x)= x^2-4</math> | ||
= Del 2 = | = Del 2 = | ||
Linje 69: | Linje 73: | ||
=== a) === | === a) === | ||
Siden trekant < | Siden trekant <math>ACD</math> er rettvinklet er det greit å finne lengden <math>AC</math> ved hjelp av Pytagoras setning: | ||
< | <math> AC^2=AD^2+CD^2 \Leftrightarrow AC=\sqrt{AD^2+CD^2} =\sqrt{(3,0 m)^2 + (5,0 m)^2}=\sqrt{9,0 m^2 + 25 m^2}=\sqrt{34 m^2} \approx 5,8 m</math> | ||
=== b) === | === b) === | ||
Linje 77: | Linje 81: | ||
Cosinussetningen: | Cosinussetningen: | ||
< | <math>BD^2 = (5m)^2 + (5m)^2 - 2 \cdot 5m \cdot 5m \cdot Cos 120^{\circ}= 75m^2 \\BD = 8,7m</math> | ||
=== c) === | === c) === | ||
[[Fil:2010opg3.PNG]]<p></p> | [[Fil:2010opg3.PNG]]<p></p> | ||
Areal trekant ACD: < | Areal trekant ACD: <math>A= \frac {3,0m \cdot 5,0m}{2}= 7,5m^2</math> | ||
<p></p> | <p></p> | ||
For å finne arealet av de tre andre trekantene trenger man å finne en del størrelser. | For å finne arealet av de tre andre trekantene trenger man å finne en del størrelser. | ||
Linje 91: | Linje 95: | ||
Vinkel ACB = 89,04 grader<p></p> | Vinkel ACB = 89,04 grader<p></p> | ||
Trekanten BCD er likebeint hvilket betyr at vinkel CBE = EDC = 30 grader.<p></p><br> | Trekanten BCD er likebeint hvilket betyr at vinkel CBE = EDC = 30 grader.<p></p><br> | ||
Areal trekant BCD: < | Areal trekant BCD: <math>A= \frac 12 \cdot 5m \cdot 5m \cdot sin 120^{\circ}= 10,83m^2</math> | ||
<p></p><br> | <p></p><br> | ||
Areal trekant ABD: < | Areal trekant ABD: <math>A = \frac 12 \cdot 3m \cdot \sqrt{75}m \cdot sin60^{\circ} = 11,22m^2</math> | ||
<p></p><br> | <p></p><br> | ||
Areal trekant ABC: < | Areal trekant ABC: <math>A = \frac 12 \cdot 5m \cdot 7,6 m \cdot sin50^{\circ} = 14,55m^2</math> | ||
''' 1) '''<p></p> | ''' 1) '''<p></p> | ||
OVE: ABD + BCD = < | OVE: ABD + BCD = <math>11,22m^2 + 10,83m^2 \approx 22,1m^2</math> | ||
''' 2) '''<p></p> | ''' 2) '''<p></p> | ||
TOMMY: ABC + ACD =< | TOMMY: ABC + ACD =<math>14,55m^2 + 7,5m^2 \approx 22,1m^2</math> <p></p> | ||
== Oppgave 4 == | == Oppgave 4 == | ||
Linje 108: | Linje 112: | ||
=== a) === | === a) === | ||
Bruker fartsformelen < | Bruker fartsformelen <math>s=vt</math>, der <math>s</math> er strekningen Arne har syklet, <math>v</math> er farten han sykler med, og <math>t</math> er tiden han har brukt: | ||
< | <math>s=s_1+s_2=v_1 \cdot t_1 + v_2 \cdot t_2 = \\ 12 \text{km/t} \cdot \frac {30 \text{min}}{60 \text{min}} + 18 \text{km/t} \cdot \frac {15 \text{min}}{60 \text{min}}= \\ 12 \text{km/t} \cdot \frac 12 \text{t}+ 18 \text{km/t} \cdot \frac 14 \text{t} = \\ 6 km + 4,5 km = 10,5 km</math> | ||
=== b) === | === b) === | ||
Linje 119: | Linje 123: | ||
Funksjonsuttrykket for de første 30 minuttene er: | Funksjonsuttrykket for de første 30 minuttene er: | ||
< | <math>y=\frac {12}{60}x= \frac 15 x=0,20x</math> gjelder når <math>x \in \left[0,30\right] </math> (sagt med ord: når <math>x</math> er fra og med 0 til og med 30). | ||
Funksjonsuttrykket for de neste 30 minuttene er: | Funksjonsuttrykket for de neste 30 minuttene er: | ||
< | <math>y=ax+b \\ a=\frac {18}{60} = 0,3 \\ 6 = 0,3 \cdot 30 +b \\ b= -3 \\ y=0,3x-3 </math> | ||
gjelder når <math>x \in \left\langle30,60\right] </math> | |||
== Oppgave 5 == | == Oppgave 5 == | ||
Linje 137: | Linje 143: | ||
<td> </td> | <td> </td> | ||
<td>'''Briller ''B'' '''</td> | <td>'''Briller ''B'' '''</td> | ||
<td>'''Ikke briller ''< | <td>'''Ikke briller ''<math>\bar{B}</math>'' '''</td> | ||
<td>'''Sum '''</td> | <td>'''Sum '''</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>'''Kontaktlinser ''L'' '''</td> | <td>'''Kontaktlinser ''L'' '''</td> | ||
<td> < | <td> <math>9,7 \percent</math> </td> | ||
<td> < | <td> <math>7,2 \percent</math> </td> | ||
<td> < | <td> <math>9,7 \percent +7,2 \percent=16,9 \percent</math> </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>'''Ikke kontaktlinser ''< | <td>'''Ikke kontaktlinser ''<math>\bar{L}</math>'''</td> | ||
<td> < | <td> <math>14,3 \percent</math> </td> | ||
<td> < | <td> <math>100 \percent - (14,3 \percent +7,2 \percent+ 9,7 \percent)=68,8 \percent</math> </td> | ||
<td> < | <td> <math>100 \percent -16,9 \percent =83,1 \percent</math> </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td> '''Sum''' </td> | <td> '''Sum''' </td> | ||
<td> < | <td> <math>24,0 \percent</math> </td> | ||
<td> < | <td> <math>100\percent -24,0 \percent =76,0 \percent</math> </td> | ||
<td> < | <td> <math>100 \percent</math> </td> | ||
</tr> | </tr> | ||
Linje 163: | Linje 169: | ||
=== b) === | === b) === | ||
Som vi regnet ut i tabellen i ''' a) ''' er sannsynligheten for at en person ikke bruker briller < | Som vi regnet ut i tabellen i ''' a) ''' er sannsynligheten for at en person ikke bruker briller <math>76,0 \percent</math>. | ||
=== c) === | === c) === | ||
Linje 169: | Linje 175: | ||
Sannsynligheten for at en person som bruker briller også bruker kontaktlinser er: | Sannsynligheten for at en person som bruker briller også bruker kontaktlinser er: | ||
< | <math>\frac{9,7\percent \cdot 100}{24 \percent}=40,4 \percent</math> | ||
== Oppgave 6 == | == Oppgave 6 == | ||
Linje 178: | Linje 184: | ||
=== b) === | === b) === | ||
Grafen har nullpunkt når < | Grafen har nullpunkt når <math>f(x)=0,5x^2-2x=0</math>. Løser likningen <math>0,5x^2-2x=0</math> for å finne nullpunktene: | ||
<math>0,5x^2-2x=0 \Leftrightarrow x(0,5x-2)=0. \ \\ \text{Produktsetningen gir da at x=0 eller 0,5x-2=0. Det vil si at } x=0 \ eller \ 0,5x-2=0 \\ \Leftrightarrow 0,5x=2 \Leftrightarrow x=4</math>. | |||
Altså er <math>f(x)=0</math> når <math>x=0</math> og <math>x=4</math>. Dette kan kontrolleres ved å finne verdien av f(x) når x=0, og når x=4 ved å sette inn henholdsvis 0 og 4 for x i likningen: | |||
<math>f(0)=0,5 \cdot 0^2 -2\cdot 0=0</math> | |||
<math>f(4)=0,5\cdot 4^2 - 2\cdot 4=0,5\cdot 16 -8=8-8=0</math> | |||
< | Det stemmer, altså er nullpunktene til funksjonen(på formen <math>(f(x),x)</math>): (0,0) og (4,0). | ||
Ekstremalpunkt. | |||
Man observerer at dette er en parabel som vender den hule siden opp (smiler), fordi tallet foran x i andre er positivt. Ekstremalpunktet er et minimumspunkt. | |||
< | <Math> f '(x) = 0 \\ x-2 = 0 \\x = 2 \\ f(2) = 2-4 =-2</Math> | ||
Minimumspunkt (2, -2) | |||
=== c) === | === c) === | ||
< | <math>f'(x) = x-2 \\ f'(1) = 1-2 = -1 </math> | ||
Stigningstallet til tangenten i (1, f(1)) er -1. | |||
=== d) === | === d) === | ||
< | <math>f'(x)=1 \\ x-2=1 \\ x=3 \\ f(3)= 4,5-6 = -1,5 \\ y=ax+b \\ -1,5 = 1 \cdot 3 + b \\ b= -4,5 \\ y= x - 4,5</math> | ||
== Oppgave 7 == | == Oppgave 7 == | ||
Linje 202: | Linje 218: | ||
==== a) ==== | ==== a) ==== | ||
< | <math>\left[{ 2y-x^2+2x=a \\ y-2x=3 }\right]</math> | ||
''' 1) ''' | ''' 1) ''' | ||
Når a=6, er likningssettet: < | Når a=6, er likningssettet: <math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 }\right]</math>. Dette kan f.eks løses ved å | ||
< | <math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 |\cdot -2}\right] \Leftrightarrow \left[{ (2y-x^2+2x=6) \\ \\+ \\ \\ (-2y+4x=-6)}\right] \Leftrightarrow 2y-2y-x^2+2x+4x=6-6 \Leftrightarrow -x^2+6x=0 x(6-x)=0 \Leftrightarrow x=0 \ eller \ x=6</math> | ||
Hvis x=0, er < | Hvis x=0, er <math>y=2x+3=2\cdot 0+3=3</math> eller hvis x=6, er <math>y=2x+3=2\cdot 6+3=15</math>. | ||
Linje 221: | Linje 237: | ||
Setter inn x=1 og y=5 i den øverste likningen i likningssettet og løser for a: | Setter inn x=1 og y=5 i den øverste likningen i likningssettet og løser for a: | ||
< | <math>a=2y-x^2+2x=2\cdot 5-1^2+2\cdot 1=10-1+2=11</math>. Altså må a være lik 11 for at x=1 og y=5 skal være en løsning til likningen. | ||
==== c) ==== | ==== c) ==== | ||
< | <math>2y-x^2+2x=a \Rightarrow y= 0,5x^2-x+ \frac a2 \\ y-2x=3 \Rightarrow y=2x+3 \\ \text{Setter funksjonene lik hverandre} \\ 0,5x^2-x+ \frac a2 = 2x+3 \\ 0,5x^2-3x+( \frac a2-3) =0 </math> | ||
Dersom man får null under rottegnet i abc formelen har man en løsning. Dersom man får et negativt tall under rottegnet har man ingen løsning. To løsninger får man når uttrykket under rottegnet er positivt.<p></p> | Dersom man får null under rottegnet i abc formelen har man en løsning. Dersom man får et negativt tall under rottegnet har man ingen løsning. To løsninger får man når uttrykket under rottegnet er positivt.<p></p> | ||
< | <math>b^2-4ac =0 \\ 9- 4 \cdot 0,5( \frac a2 - 3) =0 \\ 9-a + 6= 0 \\ a=15</math> | ||
<p></p>Man observerer at når a er større enn 15 er uttrykket negativt og likningsettet har ingen løsning.<p></p> Når a = 15 har det en løsning. <p></p> | <p></p>Man observerer at når a er større enn 15 er uttrykket negativt og likningsettet har ingen løsning.<p></p> Når a = 15 har det en løsning. <p></p> | ||
Når a er mindre enn 15 har settet to løsninger. | Når a er mindre enn 15 har settet to løsninger. | ||
Linje 233: | Linje 249: | ||
==== a) ==== | ==== a) ==== | ||
Vi deler opp arealet i to. Huset består av et kvadrat med areal < | Vi deler opp arealet i to. Huset består av et kvadrat med areal <math>a \cdot a =a^2</math><p></p> | ||
og et rektangel med areal < | og et rektangel med areal <math>3a(10-a) = 30a-3a^2</math> <p></p> | ||
Det totale arealet blir da: < | Det totale arealet blir da: <math>a^2 +(30a-3a^2) = 30a-2a^2 </math> | ||
<p></p> | <p></p> | ||
<br> | <br> | ||
< | <math>a=5 \Rightarrow 30 \cdot 5 - 2 \cdot 5^2 = 100</math> kvadratmeter | ||
==== b) ==== | ==== b) ==== | ||
< | <math>F(a) = 30a- 2a^2 \\ F(a) = 112 \\ -2a^2+30a -112 = 0 \\a=7 \vee a=8</math> | ||
==== c) ==== | ==== c) ==== | ||
< | <math>F(a) = 30a- 2a^2 \\ F'(a) = 30-4a \\F'(a) = 0 \\ 30-4a=0 \\ a=7,5 \\ F(7,5)= 112,5</math> | ||
<p></p> | <p></p> | ||
Når a = 7,5m er huset 112,5 kvadratmeter | Når a = 7,5m er huset 112,5 kvadratmeter | ||
==== d) ==== | ==== d) ==== | ||
< | <math>-2a^2+30a =72 \\ a=3 \vee a=12</math> | ||
<p></p>Huset er større enn 72 kvadrat meter når a er større enn 3m og mindre enn | <p></p>Huset er større enn 72 kvadrat meter når a er større enn 3m og mindre enn 10m |
Siste sideversjon per 29. okt. 2013 kl. 18:42
Del 1
Oppgave 1
a)
Nullpunkt ved regning:
<math>f(x) = 0 \\ -2x+3 = 0 \\-2x= -3 \\x= \frac 32</math>
Ved inspeksjon ser man at dette stemmer med grafen.
b)
<math>x^2 + 8x = -15 \\ x^2 +8x + 15 =0 \\ x = \frac{-8 \pm \sqrt{8^2-4 \cdot 1 \cdot 15}}{2 \cdot1} \\x= \frac{-8 \pm 2}{2} \\ x = -5 \vee x=-3</math>
c)
<math>5 -2^4 \cdot(4-3)^3 \cdot 2^{-3}= \\ 5-16 \cdot 1^3 \cdot \frac 18 =\\ 5- \frac{16}{8} = 3</math>
d)
<math> \frac{4a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} =\frac{2^2a^{\frac 13} \cdot a^{\frac 12}}{2a^{- \frac 16}} = 2^{2-1}a^{\frac 13 + \frac 12 -(- \frac 16)} = 2 a^{\frac 26 + \frac 36 + \frac 16} = 2a</math>
e)
<math>f(x)= -2x^3+8x+4 \\ f'(x) = -6x + 8 \\ f'(1) = -6+8=2 \\ f(1) = 10 \\ y= ax+b \\ y=2x+b \\ \text{punktet} \quad (1,f(1)) \Rightarrow 10 = 2 + b \\ b = 8 \\ \text{Likning for tangent:} y=2x+8</math>
f)
Faktoriserer uttrykket ved hjelp av konjugatsetningen og regelen for faktorisering av fullstendig kvadrat, forkorter deretter uttrykket ved å stryke samme faktorer i teller og nevner:
<math>\frac {x^2-9}{x^2+6x+9}=\frac {(x+3)\cdot (x-3)}{(x+3)(x+3)}=\frac {\cancel{(x+3)}\cdot (x-3)}{\cancel{(x+3)}(x+3)} =\frac {x-3}{x+3}</math>
g)
<math> \log(2x +4) = 3 \log 2 \Leftrightarrow \log (2x+4)= \log(2^3) \Leftrightarrow 2x+4=2^3 \Leftrightarrow 2x+4=8 \Leftrightarrow 2x=8-4 \Leftrightarrow 2x=4 \Leftrightarrow x= \frac 42 \Leftrightarrow x=2 </math>
h)
1)
Sannsynligheten for at pilen peker enten på blått eller grønt felt når hjulet stopper er:
<math> P=P(B)+P(Gr)=\frac 38 + \frac 28 = \frac 58=0,625 =62,5 </math>%
2)
Sannsynligheten for at pilen peker en gang på gult felt og en gang på grønt felt når hjulet snurres to ganger, er:
<math>P(Gul)\cdot P(Gr) +P(Gr)\cdot P(Gul) =\frac 18 \cdot \frac 28 + \frac28 \cdot \frac 18= \frac {4}{64}=\frac {1}{16}</math>
i)
Oppgave 2
a)
b)
<math> g(x) = ax^2+bx+c \\ g(0) = -4 \Rightarrow C= -4 \\ g(x) = ax^2+bx-4 \\ g(2)= 0 \Rightarrow 4a+2b-4=0 \\ g(-2) =0 \Rightarrow 4a-2b-4 =0 </math>
Legger sammen de to likningene og får:
8a-8=0
a=1
Innsatt i 4a + 2b- 4 = 0
Gir b=0, funksjonsuttrykket blir da
<math>g(x)= x^2-4</math>
Del 2
Oppgave 3
a)
Siden trekant <math>ACD</math> er rettvinklet er det greit å finne lengden <math>AC</math> ved hjelp av Pytagoras setning:
<math> AC^2=AD^2+CD^2 \Leftrightarrow AC=\sqrt{AD^2+CD^2} =\sqrt{(3,0 m)^2 + (5,0 m)^2}=\sqrt{9,0 m^2 + 25 m^2}=\sqrt{34 m^2} \approx 5,8 m</math>
b)
Cosinussetningen:
<math>BD^2 = (5m)^2 + (5m)^2 - 2 \cdot 5m \cdot 5m \cdot Cos 120^{\circ}= 75m^2 \\BD = 8,7m</math>
c)
Areal trekant ACD: <math>A= \frac {3,0m \cdot 5,0m}{2}= 7,5m^2</math>
For å finne arealet av de tre andre trekantene trenger man å finne en del størrelser.
Bruker tangens og finner at:
Vinkel CAD = 59,04 grader
Vinkel DCA = 30,96 grader
Det fører til at
Vinkel BAE = 40,96 grader og
Vinkel ACB = 89,04 grader
Trekanten BCD er likebeint hvilket betyr at vinkel CBE = EDC = 30 grader.
Areal trekant BCD: <math>A= \frac 12 \cdot 5m \cdot 5m \cdot sin 120^{\circ}= 10,83m^2</math>
Areal trekant ABD: <math>A = \frac 12 \cdot 3m \cdot \sqrt{75}m \cdot sin60^{\circ} = 11,22m^2</math>
Areal trekant ABC: <math>A = \frac 12 \cdot 5m \cdot 7,6 m \cdot sin50^{\circ} = 14,55m^2</math>
1)
OVE: ABD + BCD = <math>11,22m^2 + 10,83m^2 \approx 22,1m^2</math>
2)
TOMMY: ABC + ACD =<math>14,55m^2 + 7,5m^2 \approx 22,1m^2</math>
Oppgave 4
a)
Bruker fartsformelen <math>s=vt</math>, der <math>s</math> er strekningen Arne har syklet, <math>v</math> er farten han sykler med, og <math>t</math> er tiden han har brukt:
<math>s=s_1+s_2=v_1 \cdot t_1 + v_2 \cdot t_2 = \\ 12 \text{km/t} \cdot \frac {30 \text{min}}{60 \text{min}} + 18 \text{km/t} \cdot \frac {15 \text{min}}{60 \text{min}}= \\ 12 \text{km/t} \cdot \frac 12 \text{t}+ 18 \text{km/t} \cdot \frac 14 \text{t} = \\ 6 km + 4,5 km = 10,5 km</math>
b)
c)
Funksjonsuttrykket for de første 30 minuttene er:
<math>y=\frac {12}{60}x= \frac 15 x=0,20x</math> gjelder når <math>x \in \left[0,30\right] </math> (sagt med ord: når <math>x</math> er fra og med 0 til og med 30).
Funksjonsuttrykket for de neste 30 minuttene er:
<math>y=ax+b \\ a=\frac {18}{60} = 0,3 \\ 6 = 0,3 \cdot 30 +b \\ b= -3 \\ y=0,3x-3 </math>
gjelder når <math>x \in \left\langle30,60\right] </math>
Oppgave 5
a)
Lager krysstabell, setter inn verdiene fra oppgaven og regner ut de andre slik at tabellen blir fullstendig:
Briller B | Ikke briller <math>\bar{B}</math> | Sum | |
Kontaktlinser L | <math>9,7 \percent</math> | <math>7,2 \percent</math> | <math>9,7 \percent +7,2 \percent=16,9 \percent</math> |
Ikke kontaktlinser <math>\bar{L}</math> | <math>14,3 \percent</math> | <math>100 \percent - (14,3 \percent +7,2 \percent+ 9,7 \percent)=68,8 \percent</math> | <math>100 \percent -16,9 \percent =83,1 \percent</math> |
Sum | <math>24,0 \percent</math> | <math>100\percent -24,0 \percent =76,0 \percent</math> | <math>100 \percent</math> |
b)
Som vi regnet ut i tabellen i a) er sannsynligheten for at en person ikke bruker briller <math>76,0 \percent</math>.
c)
Sannsynligheten for at en person som bruker briller også bruker kontaktlinser er:
<math>\frac{9,7\percent \cdot 100}{24 \percent}=40,4 \percent</math>
Oppgave 6
a)
b)
Grafen har nullpunkt når <math>f(x)=0,5x^2-2x=0</math>. Løser likningen <math>0,5x^2-2x=0</math> for å finne nullpunktene:
<math>0,5x^2-2x=0 \Leftrightarrow x(0,5x-2)=0. \ \\ \text{Produktsetningen gir da at x=0 eller 0,5x-2=0. Det vil si at } x=0 \ eller \ 0,5x-2=0 \\ \Leftrightarrow 0,5x=2 \Leftrightarrow x=4</math>.
Altså er <math>f(x)=0</math> når <math>x=0</math> og <math>x=4</math>. Dette kan kontrolleres ved å finne verdien av f(x) når x=0, og når x=4 ved å sette inn henholdsvis 0 og 4 for x i likningen:
<math>f(0)=0,5 \cdot 0^2 -2\cdot 0=0</math>
<math>f(4)=0,5\cdot 4^2 - 2\cdot 4=0,5\cdot 16 -8=8-8=0</math>
Det stemmer, altså er nullpunktene til funksjonen(på formen <math>(f(x),x)</math>): (0,0) og (4,0).
Ekstremalpunkt.
Man observerer at dette er en parabel som vender den hule siden opp (smiler), fordi tallet foran x i andre er positivt. Ekstremalpunktet er et minimumspunkt.
<Math> f '(x) = 0 \\ x-2 = 0 \\x = 2 \\ f(2) = 2-4 =-2</Math>
Minimumspunkt (2, -2)
c)
<math>f'(x) = x-2 \\ f'(1) = 1-2 = -1 </math>
Stigningstallet til tangenten i (1, f(1)) er -1.
d)
<math>f'(x)=1 \\ x-2=1 \\ x=3 \\ f(3)= 4,5-6 = -1,5 \\ y=ax+b \\ -1,5 = 1 \cdot 3 + b \\ b= -4,5 \\ y= x - 4,5</math>
Oppgave 7
Alternativ I
a)
<math>\left[{ 2y-x^2+2x=a \\ y-2x=3 }\right]</math>
1)
Når a=6, er likningssettet: <math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 }\right]</math>. Dette kan f.eks løses ved å
<math>\left[{ 2y-x^2+2x=6 \\ y-2x=3 |\cdot -2}\right] \Leftrightarrow \left[{ (2y-x^2+2x=6) \\ \\+ \\ \\ (-2y+4x=-6)}\right] \Leftrightarrow 2y-2y-x^2+2x+4x=6-6 \Leftrightarrow -x^2+6x=0 x(6-x)=0 \Leftrightarrow x=0 \ eller \ x=6</math>
Hvis x=0, er <math>y=2x+3=2\cdot 0+3=3</math> eller hvis x=6, er <math>y=2x+3=2\cdot 6+3=15</math>.
2)
b)
Setter inn x=1 og y=5 i den øverste likningen i likningssettet og løser for a:
<math>a=2y-x^2+2x=2\cdot 5-1^2+2\cdot 1=10-1+2=11</math>. Altså må a være lik 11 for at x=1 og y=5 skal være en løsning til likningen.
c)
<math>2y-x^2+2x=a \Rightarrow y= 0,5x^2-x+ \frac a2 \\ y-2x=3 \Rightarrow y=2x+3 \\ \text{Setter funksjonene lik hverandre} \\ 0,5x^2-x+ \frac a2 = 2x+3 \\ 0,5x^2-3x+( \frac a2-3) =0 </math>
Dersom man får null under rottegnet i abc formelen har man en løsning. Dersom man får et negativt tall under rottegnet har man ingen løsning. To løsninger får man når uttrykket under rottegnet er positivt.
<math>b^2-4ac =0 \\ 9- 4 \cdot 0,5( \frac a2 - 3) =0 \\ 9-a + 6= 0 \\ a=15</math>
Man observerer at når a er større enn 15 er uttrykket negativt og likningsettet har ingen løsning.
Når a = 15 har det en løsning.
Når a er mindre enn 15 har settet to løsninger.
Alternativ II
a)
Vi deler opp arealet i to. Huset består av et kvadrat med areal <math>a \cdot a =a^2</math>
og et rektangel med areal <math>3a(10-a) = 30a-3a^2</math>
Det totale arealet blir da: <math>a^2 +(30a-3a^2) = 30a-2a^2 </math>
<math>a=5 \Rightarrow 30 \cdot 5 - 2 \cdot 5^2 = 100</math> kvadratmeter
b)
<math>F(a) = 30a- 2a^2 \\ F(a) = 112 \\ -2a^2+30a -112 = 0 \\a=7 \vee a=8</math>
c)
<math>F(a) = 30a- 2a^2 \\ F'(a) = 30-4a \\F'(a) = 0 \\ 30-4a=0 \\ a=7,5 \\ F(7,5)= 112,5</math>
Når a = 7,5m er huset 112,5 kvadratmeter
d)
<math>-2a^2+30a =72 \\ a=3 \vee a=12</math>
Huset er større enn 72 kvadrat meter når a er større enn 3m og mindre enn 10m