R2 2009 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Plutarco (diskusjon | bidrag)
Ingen redigeringsforklaring
Ingen redigeringsforklaring
 
(10 mellomliggende versjoner av 2 brukere er ikke vist)
Linje 1: Linje 1:
== Ekstern løsning ==
[http://ndla.no/nb/node/122085?fag=98361 Løsning fra NDLA]
= Del 1 =
= Del 1 =


Linje 5: Linje 8:
=== a) ===
=== a) ===


<tex>f(x)=x^2\sin(x)\Rightarrow f'(x)=(x^2)'\sin(x)+x^2(\sin(x))'=2x\sin(x)+x^2\cos(x)</tex>
<math>f(x)=x^2\sin(x)\Rightarrow f'(x)=(x^2)'\sin(x)+x^2(\sin(x))'=2x\sin(x)+x^2\cos(x)</math>


=== b) ===
=== b) ===


Radianer er en måte å måle vinkler på der en rett linje tilsvarer <tex>\pi</tex> radianer. Sammenhengen mellom grader og radianer er gitt ved at <tex>w=\frac{v}{180}\pi</tex> der <tex>v</tex> er grader og <tex>w</tex> radianer.
Radianer er en måte å måle vinkler på der en rett linje tilsvarer <math>\pi</math> radianer. Sammenhengen mellom grader og radianer er gitt ved at <math>w=\frac{v}{180}\pi</math> der <math>v</math> er grader og <math>w</math> radianer.


=== c) ===
=== c) ===


Vi har multipliserer med integrerende faktor <tex>e^{\int 2\,dx} \, =e^{2x}</tex> og får at <tex>y'e^{2x}+2ye^{2x}=3xe^{2x}
Vi har multipliserer med integrerende faktor <math>e^{\int 2\,dx} \, =e^{2x}</math> og får at <math>y'e^{2x}+2ye^{2x}=3xe^{2x}
</tex>. Omskrivning av venstre side gir at <tex>(ye^{2x})'=3xe^{2x}</tex>. Integrasjon gir videre at <tex>ye^{2x}=\int 3xe^{2x}\,dx=[\frac32 xe^{2x}]-\int \frac32 e^{2x}\,dx=\frac32 xe^{2x}-\frac{3}{4}e^{2x}+C</tex>. Multiplikasjon med <tex>e^{-2x}</tex> gir til slutt at <tex>y=\frac32 x-\frac{3}{4}+Ce^{-2x}</tex>. Startbetingelsen <tex>y(0)=3</tex> gir at <tex>y(0)=3=-\frac34+C</tex>, så <tex>C=3+\frac34=\frac{15}{4}</tex>, og <tex>y(x)=\frac32 x-\frac{3}{4}+\frac{15}{4}e^{-2x}</tex>
</math>. Omskrivning av venstre side gir at <math>(ye^{2x})'=3xe^{2x}</math>. Integrasjon gir videre at <math>ye^{2x}=\int 3xe^{2x}\,dx=[\frac32 xe^{2x}]-\int \frac32 e^{2x}\,dx=\frac32 xe^{2x}-\frac{3}{4}e^{2x}+C</math>. Multiplikasjon med <math>e^{-2x}</math> gir til slutt at <math>y=\frac32 x-\frac{3}{4}+Ce^{-2x}</math>. Startbetingelsen <math>y(0)=3</math> gir at <math>y(0)=3=-\frac34+C</math>, så <math>C=3+\frac34=\frac{15}{4}</math>, og <math>y(x)=\frac32 x-\frac{3}{4}+\frac{15}{4}e^{-2x}</math>




Linje 20: Linje 23:




La <tex>f(x)=x^3-x^2-4x+4</tex>
La <math>f(x)=x^3-x^2-4x+4</math>




'''1)''' <tex>f(1)=1^3-1^2-4+4=0</tex>, så <tex>(x-1)</tex> er en faktor i <tex>f(x)</tex>. Polynomdivisjon gir at <tex>x^3-x^2-4x+4\,:\,x-1=x^2-4=(x+2)(x-2)</tex>. Så <tex>f(x)=(x-1)(x-2)(x+2)</tex>
'''1)''' <math>f(1)=1^3-1^2-4+4=0</math>, så <math>(x-1)</math> er en faktor i <math>f(x)</math>. Polynomdivisjon gir at <math>x^3-x^2-4x+4\,:\,x-1=x^2-4=(x+2)(x-2)</math>. Så <math>f(x)=(x-1)(x-2)(x+2)</math>




'''2)''' Delbrøksoppspaltning gir at <tex>\frac{x^2-2x+4}{(x-1)(x-2)(x+2)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x+2}</tex>. Multipliserer vi med <tex>(x-1)(x-2)(x+2)</tex> får vi at <tex>x^2-2x+4=A(x-2)(x+2)+B(x-1)(x+2)+C(x-1)(x-2)=(A+B+C)x^2+(B-3C)x-4A-2B+2C</tex>. Sammenligning av koeffisientene gir at <tex>A+B+C=1</tex>, <tex>B-3C=-2</tex> og <tex>-2A-B+C=2</tex> med løsning <tex>A=-1</tex>, <tex>B=C=1</tex>. Altså er <tex>\frac{x^2-2x+4}{(x-1)(x-2)(x+2)}=-\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x+2}</tex>.
'''2)''' Delbrøksoppspaltning gir at <math>\frac{x^2-2x+4}{(x-1)(x-2)(x+2)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x+2}</math>. Multipliserer vi med <math>(x-1)(x-2)(x+2)</math> får vi at <math>x^2-2x+4=A(x-2)(x+2)+B(x-1)(x+2)+C(x-1)(x-2)=(A+B+C)x^2+(B-3C)x-4A-2B+2C</math>. Sammenligning av koeffisientene gir at <math>A+B+C=1</math>, <math>B-3C=-2</math> og <math>-2A-B+C=2</math> med løsning <math>A=-1</math>, <math>B=C=1</math>. Altså er <math>\frac{x^2-2x+4}{(x-1)(x-2)(x+2)}=-\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x+2}</math>.




'''3)''' <tex>\int -\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x+2}\,dx=-\ln(|x-1|)+\ln(|x-2|)+\ln(|x+2|)+C</tex>
'''3)''' <math>\int -\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x+2}\,dx=-\ln(|x-1|)+\ln(|x-2|)+\ln(|x+2|)+C</math>




=== e) ===
=== e) ===


Leddene i en geometrisk rekke er på formen <tex>ak^n</tex>. Forholdet mellom to påfølgende ledd er dermed <tex>\frac{ak^{n+1}}{ak^n}=k</tex>, så vi må ha at <tex>k=\frac{2x}{x-1}=\frac{4x+8}{2x}</tex>. Altså er <tex>4x^2=(4x+8)(x-1)=4x^2-4x+8x-8</tex>, så <tex>4x=8</tex>. Vi må derfor ha at <tex>x=2</tex>, og leddene blir <tex>a_1=x-1=2-1=1</tex>, <tex>a_2=2x=2\cdot 2=4</tex> og <tex>a_3=4x+8=4\cdot 2+8=16</tex>. Altså er <tex>a_n=4^{n-1}=\frac14 4^n</tex>.
Leddene i en geometrisk rekke er på formen <math>ak^n</math>. Forholdet mellom to påfølgende ledd er dermed <math>\frac{ak^{n+1}}{ak^n}=k</math>, så vi må ha at <math>k=\frac{2x}{x-1}=\frac{4x+8}{2x}</math>. Altså er <math>4x^2=(4x+8)(x-1)=4x^2-4x+8x-8</math>, så <math>4x=8</math>. Vi må derfor ha at <math>x=2</math>, og leddene blir <math>a_1=x-1=2-1=1</math>, <math>a_2=2x=2\cdot 2=4</math> og <math>a_3=4x+8=4\cdot 2+8=16</math>. Altså er <math>a_n=4^{n-1}=\frac14 4^n</math>.




=== f) ===
=== f) ===


'''Induksjonssteg 1:''' <tex>s_1=\frac{a_1(k^1-1)}{k-1}=a_1</tex>, så formelen er riktig for <tex>n=1</tex>.
'''Induksjonssteg 1:''' <math>s_1=\frac{a_1(k^1-1)}{k-1}=a_1</math>, så formelen er riktig for <math>n=1</math>.


'''Induksjonssteg 2:''' Anta at formelen er riktig for <tex>n=m</tex>. Da er <tex>s_m=\frac{a_1(k^m-1)}{k-1}</tex>, og <tex>s_{m+1}=s_m+a_{m+1}=\frac{a_1(k^m-1)}{k-1}+a_1k^{m}=\frac{a_1(k^m-1+k^m(k-1))}{k-1}=\frac{a_1(k^{m+1}-1)}{k-1}</tex>, så formelen er riktig for <tex>n=m+1</tex>. Det følger at formelen er riktig for alle naturlige tall.
'''Induksjonssteg 2:''' Anta at formelen er riktig for <math>n=m</math>. Da er <math>s_m=\frac{a_1(k^m-1)}{k-1}</math>, og <math>s_{m+1}=s_m+a_{m+1}=\frac{a_1(k^m-1)}{k-1}+a_1k^{m}=\frac{a_1(k^m-1+k^m(k-1))}{k-1}=\frac{a_1(k^{m+1}-1)}{k-1}</math>, så formelen er riktig for <math>n=m+1</math>. Det følger at formelen er riktig for alle naturlige tall.


== Oppgave 2 ==
== Oppgave 2 ==
Linje 47: Linje 50:
===a)===
===a)===


<tex>\vec{AB}=[2,1,2]</tex> og <tex>\vec{AC}=[1,6,4]</tex>, så <tex>\vec{AB}\cdot \vec{AC}=2+6+8=16</tex>.
<math>\vec{AB}=[2,1,2]</math> og <math>\vec{AC}=[1,6,4]</math>, så <math>\vec{AB}\cdot \vec{AC}=2+6+8=16</math>.


===b)===
===b)===


<tex>\vec{AB}\times\vec{AC}=[-8,-6,11]</tex>
<math>\vec{AB}\times\vec{AC}=[-8,-6,11]</math>


===c)===
===c)===


La <tex>P=(x,y,z)</tex> være et punkt i planet<tex>\alpha</tex>, slik at vektoren <tex>\vec{AP}=[x-1,y-1,z-1]</tex> ligger i planet. <tex>\vec{AB}\times\vec{AC}</tex> står vinkelrett på planet, så vi må ha at <tex>(\vec{AB}\times\vec{AC})\cdot \vec{AP}=[-8,-6,11]\cdot [x-1,y-1,z-1]=-8x+8-6y+6+11z-11=0</tex>. Ligningen for <tex>\alpha</tex> blir derfor <tex>8x+6y-11z=3</tex>. Punktet <tex>(x,y,z)=(2,2,3)</tex> tilfredsstiller ikke ligningen, og ligger derfor ikke i planet.
La <math>P=(x,y,z)</math> være et punkt i planet<math>\alpha</math>, slik at vektoren <math>\vec{AP}=[x-1,y-1,z-1]</math> ligger i planet. <math>\vec{AB}\times\vec{AC}</math> står vinkelrett på planet, så vi må ha at <math>(\vec{AB}\times\vec{AC})\cdot \vec{AP}=[-8,-6,11]\cdot [x-1,y-1,z-1]=-8x+8-6y+6+11z-11=0</math>. Ligningen for <math>\alpha</math> blir derfor <math>8x+6y-11z=3</math>. Punktet <math>(x,y,z)=(2,2,3)</math> tilfredsstiller ikke ligningen, og ligger derfor ikke i planet.




===d)===
===d)===


En parameterfremstilling for en linje gjennom <tex>D</tex>, parallell med <tex>\vec{AB}\times\vec{AC}</tex> er <tex>\vec{r}(t)=[2,2,3]+t[-8,-6,11]=[2-8t,2-6t,3+11t]</tex>. <tex>S</tex> er dermed bestemt ved at <tex>[8,6,-11]\cdot [2-8t,2-6t,3+11t]=16-64t+12-36t-33-121t=-221t-5=3</tex>, så <tex>t=-\frac{8}{221}</tex>.
En parameterfremstilling for en linje gjennom <math>D</math>, parallell med <math>\vec{AB}\times\vec{AC}</math> er <math>\vec{r}(t)=[2,2,3]+t[-8,-6,11]=[2-8t,2-6t,3+11t]</math>. <math>S</math> er dermed bestemt ved at <math>[8,6,-11]\cdot [2-8t,2-6t,3+11t]=16-64t+12-36t-33-121t=-221t-5=3</math>, så <math>t=-\frac{8}{221}</math>.


= Del 2 =
= Del 2 =
Linje 72: Linje 75:




<tex> \frac {a \cdot b} {2} = \frac {c \cdot h} {2} </tex> dvs<p></p>
<math> \frac {a \cdot b} {2} = \frac {c \cdot h} {2} </math> dvs<p></p>


<tex> a \cdot b = c \cdot h </tex><p></p>
<math> a \cdot b = c \cdot h </math><p></p>


Pytagoras gir
Pytagoras gir
<tex> a^2 + b^2 = c^2</tex> der <tex> c= \frac{ab}h </tex> (fra injene over)<p></p>
<math> a^2 + b^2 = c^2</math> der <math> c= \frac{ab}h </math> (fra linjene over)<p></p>


Det gir:<p></p>
Det gir:<p></p>


<tex> a^2 + b^2 =( \frac{ab}h)^2</tex> <p></p>
<math> a^2 + b^2 =( \frac{ab}h)^2</math> <p></p>
<tex> a^2 + b^2 = \frac{a^2b^2}{h^2} </tex> <p></p>
<math> a^2 + b^2 = \frac{a^2b^2}{h^2} </math> <p></p>


<tex>  \frac{a^2}{a^2b^2} + \frac{b^2}{a^2b^2} =\frac{1}{h^2} </tex>
<math>  \frac{a^2}{a^2b^2} + \frac{b^2}{a^2b^2} =\frac{1}{h^2} </math>
<p></p>
<p></p>
<tex>  \frac{1}{b^2} + \frac{1}{a^2} =\frac{1}{h^2} </tex>
<math>  \frac{1}{b^2} + \frac{1}{a^2} =\frac{1}{h^2} </math>
Hvilket skulle vises.
Hvilket skulle vises.


=== b) ===
=== b) ===


<tex>  \vec{AB} \times \vec{AC} = [bc,ac, ab] </tex> <p></p> Arealet av trekanten blir da
<math>  \vec{AB} \times \vec{AC} = [bc,ac, ab] </math> <p></p> Arealet av trekanten blir da
<tex>  \frac12 \sqrt{b^2c^2+a^2c^2+a^2b^2} </tex>
<math>  \frac12 \sqrt{b^2c^2+a^2c^2+a^2b^2} </math>






=== c) ===  
=== c) ===  
<tex> F_{\triangle ABC}^2 = F_{\triangle OAC}^2+F_{\triangle OBC}^2+F_{\triangle OAB}^2</tex>
<math> F_{\triangle ABC}^2 = F_{\triangle OAC}^2+F_{\triangle OBC}^2+F_{\triangle OAB}^2</math>
<p></p>
<p></p>
Fra b har man at  <p></p>
Fra b har man at  <p></p>
<tex> F_{\triangle ABC}^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</tex>
<math> F_{\triangle ABC}^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math>
Man finner så arealet av de tre andre trekantene ved å bruke vektorproduktet, og får:<p></p>
Man finner så arealet av de tre andre trekantene ved å bruke vektorproduktet, og får:<p></p>


<tex> F_{\triangle OAC}^2 = \frac14 (a^2C^2)</tex><p></p>
<math> F_{\triangle OAC}^2 = \frac14 (a^2C^2)</math><p></p>
<tex> F_{\triangle OBC}^2 = \frac14 (b^2c^2)</tex><p></p>
<math> F_{\triangle OBC}^2 = \frac14 (b^2c^2)</math><p></p>
<tex> F_{\triangle ABC}^2 = \frac14 (a^2b^2)</tex><p></p> Man ser da et arealsetningen er riktig.
<math> F_{\triangle ABC}^2 = \frac14 (a^2b^2)</math><p></p> Man ser da et arealsetningen er riktig.




=== d) ===  
=== d) ===  
<p></p>
<p></p>
Volumet av figuren OABC kan skrives:<p></p> <tex> \frac 12 \cdot a \cdot b \cdot c \cdot \frac13 = F_{\triangle ABC} \cdot h \cdot \frac13 </tex><p></p>
Volumet av figuren OABC kan skrives:<p></p> <math> \frac 12 \cdot a \cdot b \cdot c \cdot \frac13 = F_{\triangle ABC} \cdot h \cdot \frac13 </math><p></p>
som gir:
som gir:


<tex> F_{\triangle ABC} = \frac{ a \cdot b \cdot c}{2h}</tex>
<math> F_{\triangle ABC} = \frac{ a \cdot b \cdot c}{2h}</math>




Linje 120: Linje 122:
Man har:   
Man har:   


<tex> F_{\triangle ABC}^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</tex>
<math> F_{\triangle ABC}^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math>
og <tex> F_{\triangle ABC} = \frac{ a \cdot b \cdot c}{2h} </tex>
og <math> F_{\triangle ABC} = \frac{ a \cdot b \cdot c}{2h} </math>
Kombinert gir det<p></p>
Kombinert gir det<p></p>


<tex> (\frac{ a \cdot b \cdot c}{2h})^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</tex><p></p>
<math> (\frac{ a \cdot b \cdot c}{2h})^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math><p></p>
<tex> \frac{ a^2 \cdot b^2 \cdot c^2}{4h^2} = \frac14 (b^2c^2+a^2C^2+a^2b^2)</tex><p></p>
<math> \frac{ a^2 \cdot b^2 \cdot c^2}{4h^2} = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math><p></p>
<tex> \frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} </tex>
<math> \frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} </math>


== Oppgave 4 ==
== Oppgave 4 ==
Linje 132: Linje 134:
=== Alternativ I ===
=== Alternativ I ===


==== Oppgave 1 ====


===== a) =====
==== a) ====
 
Avstanden langs x-aksen mellom påfølgende topp- og bunnpunkt er konstant, altså er det toppunkt i <math>x=5</math>. Funksjonen har toppunkt i <math>(1,6)</math> og bunnpunkt i <math>(3,-1)</math> og <math>(7,-1)</math>. La <math>f(x)=a\cos(cx-\varphi)+d</math>. Vi kan anta at <math>a>0</math> (Hvis <math>a<0</math> kan vi skrive <math>a\cos(\theta)=-a\cos(\pi-\theta)</math> ): I toppunktet er <math>\cos=1</math> og i bunnpunktet <math>\cos=-1</math>, så vi må ha at <math>6=a+d</math> og <math>-1=-a+d</math>. Det følger at <math>a=\frac72</math> og <math>d=\frac52</math>. Vi må også ha at <math>\cos(c-\varphi)=1</math> og <math>\cos(3c-\varphi)=-1</math>, så <math>c-\varphi=0</math> og <math>3c-\varphi=\pi</math>, så <math>2c=\pi</math> og <math>2\varphi=\pi</math>. Vi får altså at <math>f(x)=\frac{7}{2}\cos(\frac{\pi}{2}x-\frac{\pi}{2})+\frac52=\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52</math>
 
==== b) ====
 
Løser vi ligningen <math>f''(x)=0</math> blir <math>x=2n,\,n\in \{1,2,3,4,5\}</math>. <math>f'(x)</math> har bunnpunkt i <math>x=2</math>, <math>x=6</math> og <math>x=10</math>, og der avtar <math>f(x)</math> raskest.
 
==== c) ====
 
Vi løser <math>\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52=0</math>, og får løsningene <math>x=\frac{2(2\pi n-\arcsin(\frac57))}{\pi}</math> og <math>x=\frac{2(2\pi n+\pi+\arcsin(\frac57))}{\pi}</math> for <math>n\in\mathbb{Z}</math>. I intervallet <math>\langle 0,12\rangle</math> er nullpunktene tilnærmet <math>2.51</math>, <math>3.49</math>, <math>6.51</math>, <math>7.49</math>, <math>10.51</math>, og <math>11.49</math>
 
==== d) ====
 
[[Bilde:Screen_shot_2012-01-13_at_02.22.12.png|500px|]]
 
 
Vi må først finne skjæringspunktene mellom <math>f(x)</math>(rød) og linja(blå) <math>y=5</math>. Altså må vi løse ligningen <math>f(x)=\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52=5</math>. De to første løsningene er tilnærmet <math>x=0.51</math> og <math>x=1.49</math>. Det samlede arealet av områdene avgrenset av kurvene, over <math>y=5</math>, blir dermed <math>3\int_{0.51}^{1.49} \frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52-5\,dx\approx 1.95</math>.
 
 
=== Alternativ II ===
 
==== a) ====
 
Volumet <math>V=\int_0^9\pi f(x)^2\,dx=\pi\int_0^9 x\,dx=\frac{\pi}{2} [x^2]_0^9=\frac{81\pi}{2}</math>
 
 
==== b) ====
 
Radius til omdreiningslegemet er <math>|f(x)-k|=|x^{\frac12}-k|</math>. Volumet blir følgelig <math>V(k)=\int_0^9\pi(x^{\frac12}-k)^2\,dx</math>


Avstanden langs x-aksen mellom påfølgende topp- og bunnpunkt er konstant, altså er det toppunkt i <tex>x=5</tex>. Funksjonen har toppunkt i <tex>(1,6)</tex> og bunnpunkt i <tex>(3,-1)</tex> og <tex>(7,-1)</tex>. La <tex>f(x)=a\cos(cx-\varphi)+d</tex>. Vi kan anta at <tex>a>0</tex> (Hvis <tex>a<0</tex> kan vi skrive <tex>a\cos(\theta)=-a\cos(\pi-\theta)</tex> ): I toppunktet er <tex>\cos=1</tex> og i bunnpunktet <tex>\cos=-1</tex>, så vi må ha at <tex>6=a+d</tex> og <tex>-1=-a+d</tex>. Det følger at <tex>a=\frac72</tex> og <tex>d=\frac52</tex>. Vi må også ha at <tex>\cos(c-\varphi)=1</tex> og <tex>\cos(3c-\varphi)=-1</tex>, så <tex>c-\varphi=0</tex> og <tex>3c-\varphi=\pi</tex>, så <tex>2c=\pi</tex> og <tex>2\varphi=\pi</tex>. Vi får altså at <tex>f(x)=\frac{7}{2}\cos(\frac{\pi}{2}x-\frac{\pi}{2})+\frac52=\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52</tex>
==== c) ====


===== b) =====
Vi har at <math>(x^{\frac12}-k)^2=x-2kx^{\frac12}+k^2</math>, så <math>V(k)=\int_0^9\pi(x^{\frac12}-k)^2\,dx=\pi\int_0^9 x-2kx^{\frac12}+k^2\,dx=\pi[\frac12 x^2-\frac{4k}{3}x^{\frac32}+k^2x]_0^9=9\pi(\frac{9}{2}-4k+k^2)</math>


Løser vi ligningen <tex>f''(x)=0</tex> blir løsningene <tex>x=2n,\,n\in \{1,2,3,4,5\}</tex>. <tex>f'(x)</tex> har bunnpunkt i <tex>x=2</tex>, <tex>x=6</tex> og <tex>x=10</tex>, og der avtar <tex>f</tex> raskest.
==== d) ====


===== c) =====
Vi nullstiller den deriverte <math>V'(k)=9\pi(2k-4)=0\Rightarrow k=2</math>. <math>V''(k)</math> er positiv, så <math>V(k)</math> har et bunnpunkt i <math>k=2</math>.


== Oppgave 5 ==
== Oppgave 5 ==
Linje 148: Linje 178:
=== a) ===
=== a) ===


Siden ballen slippes med null starthastighet er <tex>v(0)=0</tex>. Integrerende faktor er <tex>e^{\int \frac14\,dt}\,=e^{\frac14 t}</tex>. Vi multipliserer ligningen med integrerende faktor, omskriver venstresida og får <tex>(e^{\frac14 t}v)'=10e^{\frac14 t}</tex>. Integrasjon gir at <tex>e^{\frac14 t}v=\int 10e^{\frac14 t}\,dt=40e^{\frac14 t}+C</tex>, så <tex>v(t)=40+Ce^{-\frac14 t}</tex>. Startbetingelsen gir at <tex>C=-40</tex>, så løsningen på startverdiproblemet blir <tex>v(t)=40-40e^{-\frac14 t}</tex>
Siden ballen slippes med null starthastighet er <math>v(0)=0</math>. Integrerende faktor er <math>e^{\int \frac14\,dt}\,=e^{\frac14 t}</math>. Vi multipliserer ligningen med integrerende faktor, omskriver venstresida og får <math>(e^{\frac14 t}v)'=10e^{\frac14 t}</math>. Integrasjon gir at <math>e^{\frac14 t}v=\int 10e^{\frac14 t}\,dt=40e^{\frac14 t}+C</math>, så <math>v(t)=40+Ce^{-\frac14 t}</math>. Startbetingelsen gir at <math>C=-40</math>, så løsningen på startverdiproblemet blir <math>v(t)=40-40e^{-\frac14 t}</math>


=== b) ===
=== b) ===


<tex>s'(t)=v(t)=40-40e^{-\frac14 t}</tex>. Integrasjon gir at <tex>s(t)=\int 40-40e^{-\frac14 t}\,dt=40t+160e^{-\frac14 t}+C</tex>. Startbetingelsen <tex>s(0)=0</tex> gir at <tex>C=-160</tex>, så løsningen blir <tex>s(t)=40t+160e^{-\frac14 t}-160</tex>
<math>s'(t)=v(t)=40-40e^{-\frac14 t}</math>. Integrasjon gir at <math>s(t)=\int 40-40e^{-\frac14 t}\,dt=40t+160e^{-\frac14 t}+C</math>. Startbetingelsen <math>s(0)=0</math> gir at <math>C=-160</math>, så løsningen blir <math>s(t)=40t+160e^{-\frac14 t}-160</math>


=== c) ===
=== c) ===


Vi må løse ligningen <tex>30=s(t)=40t+160e^{-\frac14 t}-160</tex> grafisk. Løsningen er <tex>t\approx 2.73</tex>. Farten er da <tex>v(2.73)\approx 19.8</tex>
Vi må løse ligningen <math>30=s(t)=40t+160e^{-\frac14 t}-160</math> grafisk. Løsningen er <math>t\approx 2.73</math>. Farten er da <math>v(2.73)\approx 19.8\,\frac{\text{m}}{\text{s}}</math>.


=== d) ===
=== d) ===


Hastigheten er gitt ved <tex>v(t)=40+Ce^{-\frac14 t}</tex>. Med startbetingelsen <tex>v(0)=v_0</tex>, blir <tex>C=v_0-40</tex>, så  
Hastigheten er gitt ved <math>v(t)=40+Ce^{-\frac14 t}</math>. Med startbetingelsen <math>v(0)=v_0</math>, blir <math>C=v_0-40</math>, så  
<tex>v(t)=40+(v_0-40)e^{-\frac14 t}</tex>. Vi får videre at <tex>s(t)=\int v(t)\,dt=\int 40+(v_0-40)e^{-\frac14 t}\,dt=40t-4(v_0-40)e^{-\frac14 t}+D</tex>. Startbetingelsen <tex>s(0)=0</tex> gir at <tex>D=4v_0-160</tex>, så <tex>s(t)=40t-4(v_0-40)e^{-\frac14 t}+4v_0-160</tex>. Vi må nå løse ligningen <tex>s(2)=30</tex>: <tex>30=80-4(v_0-40)e^{-\frac12}+4v_0-160\Rightarrow v_0\approx 8.23</tex>. Starthastigheten må være omtrent <tex>8.23 \,\frac{\text{m}}{\text{s}}</tex> for at ballen skal bruke <tex>2</tex> sekunder på å falle <tex>30</tex> meter.
<math>v(t)=40+(v_0-40)e^{-\frac14 t}</math>. Vi får videre at <math>s(t)=\int v(t)\,dt=\int 40+(v_0-40)e^{-\frac14 t}\,dt=40t-4(v_0-40)e^{-\frac14 t}+D</math>. Startbetingelsen <math>s(0)=0</math> gir at <math>D=4v_0-160</math>, så <math>s(t)=40t-4(v_0-40)e^{-\frac14 t}+4v_0-160</math>. Vi må nå løse ligningen <math>s(2)=30</math>: <math>30=80-4(v_0-40)e^{-\frac12}+4v_0-160\Rightarrow v_0\approx 8.23</math>. Starthastigheten må være omtrent <math>8.23 \,\frac{\text{m}}{\text{s}}</math> for at ballen skal bruke <math>2</math> sekunder på å falle <math>30</math> meter.

Siste sideversjon per 2. nov. 2013 kl. 18:37

Ekstern løsning

Løsning fra NDLA

Del 1

Oppgave 1

a)

<math>f(x)=x^2\sin(x)\Rightarrow f'(x)=(x^2)'\sin(x)+x^2(\sin(x))'=2x\sin(x)+x^2\cos(x)</math>

b)

Radianer er en måte å måle vinkler på der en rett linje tilsvarer <math>\pi</math> radianer. Sammenhengen mellom grader og radianer er gitt ved at <math>w=\frac{v}{180}\pi</math> der <math>v</math> er grader og <math>w</math> radianer.

c)

Vi har multipliserer med integrerende faktor <math>e^{\int 2\,dx} \, =e^{2x}</math> og får at <math>y'e^{2x}+2ye^{2x}=3xe^{2x} </math>. Omskrivning av venstre side gir at <math>(ye^{2x})'=3xe^{2x}</math>. Integrasjon gir videre at <math>ye^{2x}=\int 3xe^{2x}\,dx=[\frac32 xe^{2x}]-\int \frac32 e^{2x}\,dx=\frac32 xe^{2x}-\frac{3}{4}e^{2x}+C</math>. Multiplikasjon med <math>e^{-2x}</math> gir til slutt at <math>y=\frac32 x-\frac{3}{4}+Ce^{-2x}</math>. Startbetingelsen <math>y(0)=3</math> gir at <math>y(0)=3=-\frac34+C</math>, så <math>C=3+\frac34=\frac{15}{4}</math>, og <math>y(x)=\frac32 x-\frac{3}{4}+\frac{15}{4}e^{-2x}</math>


d)

La <math>f(x)=x^3-x^2-4x+4</math>


1) <math>f(1)=1^3-1^2-4+4=0</math>, så <math>(x-1)</math> er en faktor i <math>f(x)</math>. Polynomdivisjon gir at <math>x^3-x^2-4x+4\,:\,x-1=x^2-4=(x+2)(x-2)</math>. Så <math>f(x)=(x-1)(x-2)(x+2)</math>


2) Delbrøksoppspaltning gir at <math>\frac{x^2-2x+4}{(x-1)(x-2)(x+2)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x+2}</math>. Multipliserer vi med <math>(x-1)(x-2)(x+2)</math> får vi at <math>x^2-2x+4=A(x-2)(x+2)+B(x-1)(x+2)+C(x-1)(x-2)=(A+B+C)x^2+(B-3C)x-4A-2B+2C</math>. Sammenligning av koeffisientene gir at <math>A+B+C=1</math>, <math>B-3C=-2</math> og <math>-2A-B+C=2</math> med løsning <math>A=-1</math>, <math>B=C=1</math>. Altså er <math>\frac{x^2-2x+4}{(x-1)(x-2)(x+2)}=-\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x+2}</math>.


3) <math>\int -\frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x+2}\,dx=-\ln(|x-1|)+\ln(|x-2|)+\ln(|x+2|)+C</math>


e)

Leddene i en geometrisk rekke er på formen <math>ak^n</math>. Forholdet mellom to påfølgende ledd er dermed <math>\frac{ak^{n+1}}{ak^n}=k</math>, så vi må ha at <math>k=\frac{2x}{x-1}=\frac{4x+8}{2x}</math>. Altså er <math>4x^2=(4x+8)(x-1)=4x^2-4x+8x-8</math>, så <math>4x=8</math>. Vi må derfor ha at <math>x=2</math>, og leddene blir <math>a_1=x-1=2-1=1</math>, <math>a_2=2x=2\cdot 2=4</math> og <math>a_3=4x+8=4\cdot 2+8=16</math>. Altså er <math>a_n=4^{n-1}=\frac14 4^n</math>.


f)

Induksjonssteg 1: <math>s_1=\frac{a_1(k^1-1)}{k-1}=a_1</math>, så formelen er riktig for <math>n=1</math>.

Induksjonssteg 2: Anta at formelen er riktig for <math>n=m</math>. Da er <math>s_m=\frac{a_1(k^m-1)}{k-1}</math>, og <math>s_{m+1}=s_m+a_{m+1}=\frac{a_1(k^m-1)}{k-1}+a_1k^{m}=\frac{a_1(k^m-1+k^m(k-1))}{k-1}=\frac{a_1(k^{m+1}-1)}{k-1}</math>, så formelen er riktig for <math>n=m+1</math>. Det følger at formelen er riktig for alle naturlige tall.

Oppgave 2

a)

<math>\vec{AB}=[2,1,2]</math> og <math>\vec{AC}=[1,6,4]</math>, så <math>\vec{AB}\cdot \vec{AC}=2+6+8=16</math>.

b)

<math>\vec{AB}\times\vec{AC}=[-8,-6,11]</math>

c)

La <math>P=(x,y,z)</math> være et punkt i planet<math>\alpha</math>, slik at vektoren <math>\vec{AP}=[x-1,y-1,z-1]</math> ligger i planet. <math>\vec{AB}\times\vec{AC}</math> står vinkelrett på planet, så vi må ha at <math>(\vec{AB}\times\vec{AC})\cdot \vec{AP}=[-8,-6,11]\cdot [x-1,y-1,z-1]=-8x+8-6y+6+11z-11=0</math>. Ligningen for <math>\alpha</math> blir derfor <math>8x+6y-11z=3</math>. Punktet <math>(x,y,z)=(2,2,3)</math> tilfredsstiller ikke ligningen, og ligger derfor ikke i planet.


d)

En parameterfremstilling for en linje gjennom <math>D</math>, parallell med <math>\vec{AB}\times\vec{AC}</math> er <math>\vec{r}(t)=[2,2,3]+t[-8,-6,11]=[2-8t,2-6t,3+11t]</math>. <math>S</math> er dermed bestemt ved at <math>[8,6,-11]\cdot [2-8t,2-6t,3+11t]=16-64t+12-36t-33-121t=-221t-5=3</math>, så <math>t=-\frac{8}{221}</math>.

Del 2

Oppgave 3

a)

Arealet av trekanten kan skrives på to måter:


<math> \frac {a \cdot b} {2} = \frac {c \cdot h} {2} </math> dvs

<math> a \cdot b = c \cdot h </math>

Pytagoras gir

<math> a^2 + b^2 = c^2</math> der <math> c= \frac{ab}h </math> (fra linjene over)

Det gir:

<math> a^2 + b^2 =( \frac{ab}h)^2</math>

<math> a^2 + b^2 = \frac{a^2b^2}{h^2} </math>

<math> \frac{a^2}{a^2b^2} + \frac{b^2}{a^2b^2} =\frac{1}{h^2} </math>

<math> \frac{1}{b^2} + \frac{1}{a^2} =\frac{1}{h^2} </math> Hvilket skulle vises.

b)

<math> \vec{AB} \times \vec{AC} = [bc,ac, ab] </math>

Arealet av trekanten blir da

<math> \frac12 \sqrt{b^2c^2+a^2c^2+a^2b^2} </math>


c)

<math> F_{\triangle ABC}^2 = F_{\triangle OAC}^2+F_{\triangle OBC}^2+F_{\triangle OAB}^2</math>

Fra b har man at

<math> F_{\triangle ABC}^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math>

Man finner så arealet av de tre andre trekantene ved å bruke vektorproduktet, og får:

<math> F_{\triangle OAC}^2 = \frac14 (a^2C^2)</math>

<math> F_{\triangle OBC}^2 = \frac14 (b^2c^2)</math>

<math> F_{\triangle ABC}^2 = \frac14 (a^2b^2)</math>

Man ser da et arealsetningen er riktig.


d)

Volumet av figuren OABC kan skrives:

<math> \frac 12 \cdot a \cdot b \cdot c \cdot \frac13 = F_{\triangle ABC} \cdot h \cdot \frac13 </math>

som gir:

<math> F_{\triangle ABC} = \frac{ a \cdot b \cdot c}{2h}</math>


e)

Man har:

<math> F_{\triangle ABC}^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math> og <math> F_{\triangle ABC} = \frac{ a \cdot b \cdot c}{2h} </math>

Kombinert gir det

<math> (\frac{ a \cdot b \cdot c}{2h})^2 = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math>

<math> \frac{ a^2 \cdot b^2 \cdot c^2}{4h^2} = \frac14 (b^2c^2+a^2C^2+a^2b^2)</math>

<math> \frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} </math>

Oppgave 4

Alternativ I

a)

Avstanden langs x-aksen mellom påfølgende topp- og bunnpunkt er konstant, altså er det toppunkt i <math>x=5</math>. Funksjonen har toppunkt i <math>(1,6)</math> og bunnpunkt i <math>(3,-1)</math> og <math>(7,-1)</math>. La <math>f(x)=a\cos(cx-\varphi)+d</math>. Vi kan anta at <math>a>0</math> (Hvis <math>a<0</math> kan vi skrive <math>a\cos(\theta)=-a\cos(\pi-\theta)</math> ): I toppunktet er <math>\cos=1</math> og i bunnpunktet <math>\cos=-1</math>, så vi må ha at <math>6=a+d</math> og <math>-1=-a+d</math>. Det følger at <math>a=\frac72</math> og <math>d=\frac52</math>. Vi må også ha at <math>\cos(c-\varphi)=1</math> og <math>\cos(3c-\varphi)=-1</math>, så <math>c-\varphi=0</math> og <math>3c-\varphi=\pi</math>, så <math>2c=\pi</math> og <math>2\varphi=\pi</math>. Vi får altså at <math>f(x)=\frac{7}{2}\cos(\frac{\pi}{2}x-\frac{\pi}{2})+\frac52=\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52</math>

b)

Løser vi ligningen <math>f(x)=0</math> blir <math>x=2n,\,n\in \{1,2,3,4,5\}</math>. <math>f'(x)</math> har bunnpunkt i <math>x=2</math>, <math>x=6</math> og <math>x=10</math>, og der avtar <math>f(x)</math> raskest.

c)

Vi løser <math>\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52=0</math>, og får løsningene <math>x=\frac{2(2\pi n-\arcsin(\frac57))}{\pi}</math> og <math>x=\frac{2(2\pi n+\pi+\arcsin(\frac57))}{\pi}</math> for <math>n\in\mathbb{Z}</math>. I intervallet <math>\langle 0,12\rangle</math> er nullpunktene tilnærmet <math>2.51</math>, <math>3.49</math>, <math>6.51</math>, <math>7.49</math>, <math>10.51</math>, og <math>11.49</math>

d)


Vi må først finne skjæringspunktene mellom <math>f(x)</math>(rød) og linja(blå) <math>y=5</math>. Altså må vi løse ligningen <math>f(x)=\frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52=5</math>. De to første løsningene er tilnærmet <math>x=0.51</math> og <math>x=1.49</math>. Det samlede arealet av områdene avgrenset av kurvene, over <math>y=5</math>, blir dermed <math>3\int_{0.51}^{1.49} \frac{7}{2}\sin(\frac{\pi}{2}x)+\frac52-5\,dx\approx 1.95</math>.


Alternativ II

a)

Volumet <math>V=\int_0^9\pi f(x)^2\,dx=\pi\int_0^9 x\,dx=\frac{\pi}{2} [x^2]_0^9=\frac{81\pi}{2}</math>


b)

Radius til omdreiningslegemet er <math>|f(x)-k|=|x^{\frac12}-k|</math>. Volumet blir følgelig <math>V(k)=\int_0^9\pi(x^{\frac12}-k)^2\,dx</math>

c)

Vi har at <math>(x^{\frac12}-k)^2=x-2kx^{\frac12}+k^2</math>, så <math>V(k)=\int_0^9\pi(x^{\frac12}-k)^2\,dx=\pi\int_0^9 x-2kx^{\frac12}+k^2\,dx=\pi[\frac12 x^2-\frac{4k}{3}x^{\frac32}+k^2x]_0^9=9\pi(\frac{9}{2}-4k+k^2)</math>

d)

Vi nullstiller den deriverte <math>V'(k)=9\pi(2k-4)=0\Rightarrow k=2</math>. <math>V(k)</math> er positiv, så <math>V(k)</math> har et bunnpunkt i <math>k=2</math>.

Oppgave 5

a)

Siden ballen slippes med null starthastighet er <math>v(0)=0</math>. Integrerende faktor er <math>e^{\int \frac14\,dt}\,=e^{\frac14 t}</math>. Vi multipliserer ligningen med integrerende faktor, omskriver venstresida og får <math>(e^{\frac14 t}v)'=10e^{\frac14 t}</math>. Integrasjon gir at <math>e^{\frac14 t}v=\int 10e^{\frac14 t}\,dt=40e^{\frac14 t}+C</math>, så <math>v(t)=40+Ce^{-\frac14 t}</math>. Startbetingelsen gir at <math>C=-40</math>, så løsningen på startverdiproblemet blir <math>v(t)=40-40e^{-\frac14 t}</math>

b)

<math>s'(t)=v(t)=40-40e^{-\frac14 t}</math>. Integrasjon gir at <math>s(t)=\int 40-40e^{-\frac14 t}\,dt=40t+160e^{-\frac14 t}+C</math>. Startbetingelsen <math>s(0)=0</math> gir at <math>C=-160</math>, så løsningen blir <math>s(t)=40t+160e^{-\frac14 t}-160</math>

c)

Vi må løse ligningen <math>30=s(t)=40t+160e^{-\frac14 t}-160</math> grafisk. Løsningen er <math>t\approx 2.73</math>. Farten er da <math>v(2.73)\approx 19.8\,\frac{\text{m}}{\text{s}}</math>.

d)

Hastigheten er gitt ved <math>v(t)=40+Ce^{-\frac14 t}</math>. Med startbetingelsen <math>v(0)=v_0</math>, blir <math>C=v_0-40</math>, så <math>v(t)=40+(v_0-40)e^{-\frac14 t}</math>. Vi får videre at <math>s(t)=\int v(t)\,dt=\int 40+(v_0-40)e^{-\frac14 t}\,dt=40t-4(v_0-40)e^{-\frac14 t}+D</math>. Startbetingelsen <math>s(0)=0</math> gir at <math>D=4v_0-160</math>, så <math>s(t)=40t-4(v_0-40)e^{-\frac14 t}+4v_0-160</math>. Vi må nå løse ligningen <math>s(2)=30</math>: <math>30=80-4(v_0-40)e^{-\frac12}+4v_0-160\Rightarrow v_0\approx 8.23</math>. Starthastigheten må være omtrent <math>8.23 \,\frac{\text{m}}{\text{s}}</math> for at ballen skal bruke <math>2</math> sekunder på å falle <math>30</math> meter.