Løsning del 2 utrinn Vår 23: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Sansyv (diskusjon | bidrag)
Lagt til enda en videoløsning for Del 2
 
(34 mellomliggende versjoner av 3 brukere er ikke vist)
Linje 3: Linje 3:
[https://matematikk.net/matteprat/viewtopic.php?f=1&t=54322 Diskusjon av denne oppgaven på matteprat]
[https://matematikk.net/matteprat/viewtopic.php?f=1&t=54322 Diskusjon av denne oppgaven på matteprat]


[https://youtu.be/Ha9nTw4Hzik?si=53VsEPMzYvW_m1jf Videoløsning av Del 2 av Sander Syvertsen]
[https://youtu.be/JA96323xPYY Videoløsning av Lektor Lainz (Reabel matte)]


==DEL TO==
==DEL TO==
Linje 40: Linje 43:


Det kan vi ikke si noe om. Dersom en elev var borte har denne 400 kroner i lommepenger, fordi (2700 + 400):31 =100. Dersom 100 elever var borte hadde disse 103 kr i gjennomsnitt i lommepenger. Ut fra de opplysningene kan man ikke si noe om hvor mange det er på 10. trinn.
Det kan vi ikke si noe om. Dersom en elev var borte har denne 400 kroner i lommepenger, fordi (2700 + 400):31 =100. Dersom 100 elever var borte hadde disse 103 kr i gjennomsnitt i lommepenger. Ut fra de opplysningene kan man ikke si noe om hvor mange det er på 10. trinn.
x
===Oppgave 4===
Arealet av en sirkel er gitt som $A = \pi r^2$
Dersom man skal finne arealet av en halvsirkel kan man halvere $r^2$ og ikke r. Halvors løsning er derfor feil.
Kvadratet av 6 er 36 og kvadratet av 3 er 9, men 9 er ikke halvparten av 36, selv om 3 er halvparten av 6.
===Oppgave 5===
====a)====
Den blå blokken er en løkke som gjentar seg så mange ganger som den verdien du gir inn i det grå feltet: "antall_terningkast". Inne i løkken skjer to ting. Det trekkes et tilfeldig tall fra og med en til og med seks. Det trukkede tallet legges til i en liste. Når løkken er ferdig  skrives listen til skjermen.
====b)====
Sannsynlighet er relativ frekvens i det lange løp. Det betyr at man må ha mange terningkast. Dersom vi velger et veldig stort tall vil datamaskinen jobbe lenge for å kjøre programmet. Det er ikke ønskelig. Jeg ville prøvd med tre forskjellige verdier. 100, 1000 og 10000. Jo større tallet er jo nærmere kommer de forskjellige utfallene 16,7%.
===Oppgave 6===
Det er mest lønnsomme å velge kronen som dobler seg 14 ganger:
1, 2,4,8,16,32,......
er det samme som
$2^0, 2^1, 2^2, 2^3, 2^4, 2^5, ...$
$2^{14}= 16384$
===Oppgave 7===
Fra veiledningen:
''I oppgave 7 og 8 presenterer vi en situasjon eller en
''problemstilling der du selv skal undersøke og utforske.
''I disse oppgavene vil vi se etter din kompetanse i å:
''• vurdere hva du vil utforske og formulere matematiske
''spørsmål knyttet til innhold i oppgaven
''• vise fremgangsmåte/resonnement og besvare de
''matematiske spørsmålene du formulerer
''• bruke hensiktsmessige hjelpemiddel
''• argumentere for løsningene dine og gjøre kritiske
''vurderinger
''Vi anbefaler å bruke omtrent 60 minutter på oppgave 7 og 8 til
''sammen.
'''Boble 1'''
Utsagnet stemmer fordi 4+2 er 6 og 6 kvadrert er 36.
'''Boble 2'''
4 minus 2, ganger 4 minus 2, er to ganger to som er 4, så arealet av det blå området er ganske riktig 36- 4 = 32.
'''Boble 3'''
Samme tanke som over gir 20, som også er i samsvar med generell løsning nedenfor.
'''Boble 4'''
Vi finner en generell løsning for arealet av det blå området: dersom man tar første kvadratsetning minus andre kvadratsetning, der a og b har samme verdi i begge ($a \neq b$) får man:
$(a+b)(a+b) - (a-b)(a-b) = a^2+2ab+ b^2 -(a^2 -2ab +b^2)= 2ab + 2ab = 4ab $
===Oppgave 8===
Jeg begynner med å gjøre beregninger basert på informasjonen i boblene (og tabellen):
'''Bilen har et årlig verditap på 10%:'''
Etter to år er bilens verdi: $83600\cdot 0,9^2=67716$ kr.
Det samlede verdifallet i løpet av to år er $83600-67716 = 15884 $ kr, som tilsvarer et tap på ca. 15884/ 24 = 662 kr per måned.
'''Drivstoffkostnader:'''
Med et forbruk på 0,3 liter/ mil og en ukentlig kjørelengde på 6,5 mil blir det et forbruk på 0,3*6,5 = 1,95 liter i uken, eller ca 1,95*4 = 7,8 liter i måneden.  Dersom bensinprisen er 21kr per liter, blir det en månedlig kostnad på 7,8*21 = 163,8 = ca. 164 kroner. Bensinprisen er utenfor Thereses kontroll og kan godt stige.
Fordi det månedlige forbruket er lavt, utgjør drivstoffutgiftene ca. en fjerdedel av bilens månedlige verditap (164/662 = ca. 1/4)
''' Sparepenger'''
Sparepengene har stått på konto i 3 år med 1,5 % årlig rente. Det betyr at hun for 3 år siden satte inn:
$41827\cdot 1,015^{-3}=40000$ kroner på konto.
Therese bør sette opp et budsjett. Det blir dyrt for henne å betale både førerkort og prisen på bilen, så jeg foreslår at hun låner penger fra foreldrene. Etter to år vil hun ha tjent nok gjennom jobben til å både betale kostnader knyttet til bilen, og annen fritid. Hun an også betale lånet tilbake, og ha penger til overs.
[[File: usk-v23-del2-8.png | 1000px]]
[[File: usk-v23-del2-8-formler.png |1000px]]

Siste sideversjon per 18. mai 2024 kl. 14:02

Oppgaven som pdf

Diskusjon av denne oppgaven på matteprat

Videoløsning av Del 2 av Sander Syvertsen

Videoløsning av Lektor Lainz (Reabel matte)

DEL TO

Oppgave 1

Flex er billigst dersom du leier for mer enn 100 minutter. For kortere tid er Wheele billigst.

Leien for Flex er kr. 100 pluss kr. 2 per minutt.

Leien for Wheele er kr. 50 pluss kr. 2,50 per minutt.

Oppgave 2

Her kan man tenke brøk: Antallet man betaler for setter man i teller. Antallet man får setter man i nevner. Man ønsker da brøken så liten som mulig fordi man ønsker å få mange, men betale for så få som mulig. Tilbud 1: $\frac 35$

Tilbud 2: 25% er det samme som at du betaler for 3 og får den 4., altså $\frac 34$

Tilbud 3: Tilbudet er det samme som i 2.

Tilbud 4: $\frac 23$

I tilbud 1 betaler man for 60% av varene (6/10). Det er best. I tilbud 2 og 3 betaler man for 75% og i tilbud 4 betaler man for 67% av varene.

Oppgave 3

a)

Det var 30 elever med på undersøkelsen. De fikk tilsammen 2700 kroner i ukepenger. Det gir et gjennomsnitt på 90 kroner per person.

b)

Det kan vi ikke si noe om. Dersom en elev var borte har denne 400 kroner i lommepenger, fordi (2700 + 400):31 =100. Dersom 100 elever var borte hadde disse 103 kr i gjennomsnitt i lommepenger. Ut fra de opplysningene kan man ikke si noe om hvor mange det er på 10. trinn. x

Oppgave 4

Arealet av en sirkel er gitt som $A = \pi r^2$

Dersom man skal finne arealet av en halvsirkel kan man halvere $r^2$ og ikke r. Halvors løsning er derfor feil.

Kvadratet av 6 er 36 og kvadratet av 3 er 9, men 9 er ikke halvparten av 36, selv om 3 er halvparten av 6.


Oppgave 5

a)

Den blå blokken er en løkke som gjentar seg så mange ganger som den verdien du gir inn i det grå feltet: "antall_terningkast". Inne i løkken skjer to ting. Det trekkes et tilfeldig tall fra og med en til og med seks. Det trukkede tallet legges til i en liste. Når løkken er ferdig skrives listen til skjermen.

b)

Sannsynlighet er relativ frekvens i det lange løp. Det betyr at man må ha mange terningkast. Dersom vi velger et veldig stort tall vil datamaskinen jobbe lenge for å kjøre programmet. Det er ikke ønskelig. Jeg ville prøvd med tre forskjellige verdier. 100, 1000 og 10000. Jo større tallet er jo nærmere kommer de forskjellige utfallene 16,7%.

Oppgave 6

Det er mest lønnsomme å velge kronen som dobler seg 14 ganger:

1, 2,4,8,16,32,......

er det samme som

$2^0, 2^1, 2^2, 2^3, 2^4, 2^5, ...$


$2^{14}= 16384$

Oppgave 7

Fra veiledningen:

I oppgave 7 og 8 presenterer vi en situasjon eller en problemstilling der du selv skal undersøke og utforske. I disse oppgavene vil vi se etter din kompetanse i å:

• vurdere hva du vil utforske og formulere matematiske spørsmål knyttet til innhold i oppgaven

• vise fremgangsmåte/resonnement og besvare de matematiske spørsmålene du formulerer

• bruke hensiktsmessige hjelpemiddel

• argumentere for løsningene dine og gjøre kritiske vurderinger

Vi anbefaler å bruke omtrent 60 minutter på oppgave 7 og 8 til sammen.

Boble 1

Utsagnet stemmer fordi 4+2 er 6 og 6 kvadrert er 36.

Boble 2

4 minus 2, ganger 4 minus 2, er to ganger to som er 4, så arealet av det blå området er ganske riktig 36- 4 = 32.

Boble 3

Samme tanke som over gir 20, som også er i samsvar med generell løsning nedenfor.

Boble 4

Vi finner en generell løsning for arealet av det blå området: dersom man tar første kvadratsetning minus andre kvadratsetning, der a og b har samme verdi i begge ($a \neq b$) får man:

$(a+b)(a+b) - (a-b)(a-b) = a^2+2ab+ b^2 -(a^2 -2ab +b^2)= 2ab + 2ab = 4ab $

Oppgave 8

Jeg begynner med å gjøre beregninger basert på informasjonen i boblene (og tabellen):

Bilen har et årlig verditap på 10%:

Etter to år er bilens verdi: $83600\cdot 0,9^2=67716$ kr.

Det samlede verdifallet i løpet av to år er $83600-67716 = 15884 $ kr, som tilsvarer et tap på ca. 15884/ 24 = 662 kr per måned.

Drivstoffkostnader:

Med et forbruk på 0,3 liter/ mil og en ukentlig kjørelengde på 6,5 mil blir det et forbruk på 0,3*6,5 = 1,95 liter i uken, eller ca 1,95*4 = 7,8 liter i måneden. Dersom bensinprisen er 21kr per liter, blir det en månedlig kostnad på 7,8*21 = 163,8 = ca. 164 kroner. Bensinprisen er utenfor Thereses kontroll og kan godt stige.

Fordi det månedlige forbruket er lavt, utgjør drivstoffutgiftene ca. en fjerdedel av bilens månedlige verditap (164/662 = ca. 1/4)

Sparepenger

Sparepengene har stått på konto i 3 år med 1,5 % årlig rente. Det betyr at hun for 3 år siden satte inn:

$41827\cdot 1,015^{-3}=40000$ kroner på konto.

Therese bør sette opp et budsjett. Det blir dyrt for henne å betale både førerkort og prisen på bilen, så jeg foreslår at hun låner penger fra foreldrene. Etter to år vil hun ha tjent nok gjennom jobben til å både betale kostnader knyttet til bilen, og annen fritid. Hun an også betale lånet tilbake, og ha penger til overs.