Linjer i rommet: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Plutarco (diskusjon | bidrag)
Ingen redigeringsforklaring
m Teksterstatting – «</tex>» til «</math>»
 
(10 mellomliggende versjoner av 3 brukere er ikke vist)
Linje 1: Linje 1:
For å finne et uttrykk for en linje i rommet trenger vi å vite retningen på linja samt et punkt på linja. En parameterfremstilling vil da generelt være på formen
==Linjer som skjæringen mellom to plan==


Vi kan beskrive en linje i rommet som skjæringen mellom to ikkeparallelle plan. En linje vil derfor være mengden av punkter x,y,z som tilfredsstiller systemet


: <tex>\vec{r}(t)=(x(t),y(t),z(t))= \vec{r_0}t+\vec{r_1}</tex>,


:<math>a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2</math>


der <tex>\vec{r_0}</tex> er en (konstant) vektor som er parallell med linja, og <tex>\vec{r_1}</tex> beskriver et eller annet punkt på linja. Dette kan begrunnes geometrisk: Vi tenker oss at vi starter i origo og beveger oss til punktet <tex>\vec{r_1}</tex> på linja. Deretter legger vi til en vektor <tex>\vec{r_0}t</tex> som vi vet ligger parallelt. Ved å variere verdien av <tex>t</tex> varierer vi lengden av den parallelle vektoren, slik at vi hele tiden forflytter oss langs (på) linja.


Her ser vi at vi kan eliminere én av variablene slik at vi får én ligning med to ukjente. F.eks. kan vi eliminere z slik at vi får en ligning på formen g(x,y)=0. Finner vi punkter x og y som tilfredsstiller denne, kan vi substituere x og y inn i en av de to opprinnelige ligningene for å finne den korresponderende z-verdien.


==Parameterfremstilling av linjer i rommet==


== Vinkelen mellom linjer i rommet ==


En annen måte å beskrive linjer i rommet på er via parameterfremstillinger. Da trenger vi å vite retningen på linja samt et punkt på linja. En parameterfremstilling vil da generelt være på formen


Vi kan definere vinkelen <tex>\theta</tex> mellom to romlige linjer som vinkelen mellom vektorene som er parallelle med linjene. Merk at to generelle linjer i rommet ikke nødvendigvis skjærer hverandre. Dersom <tex>\vec{p}</tex> er parallell med den ene linja og <tex>\vec{q}</tex> er parallell med den andre, kan vi bruke definisjonen av skalarproduktet


: <math>\vec{r}(t)=(x(t),y(t),z(t))= \vec{r_1}t+\vec{r_0}</math>,


:<tex>\vec{p}\cdot \vec{q} =|\vec{p}||\vec{q}|\cos(\theta)</tex>


 
der <math>\vec{r_1}</math> er en (konstant) vektor som er parallell med linja, og <math>\vec{r_0}</math> er et punkt på linja. Dette kan begrunnes geometrisk: Vi tenker oss at vi starter i origo og beveger oss til punktet <math>\vec{r_0}</math>. Deretter legger vi til en vektor <math>\vec{r_1}t</math> som vi vet ligger parallelt. Ved å variere verdien av <math>t</math> varierer vi lengden av den parallelle vektoren, slik at vi hele tiden forflytter oss langs (på) linja.
til å bestemme vinkelen mellom linjene.

Siste sideversjon per 5. feb. 2013 kl. 20:58

Linjer som skjæringen mellom to plan

Vi kan beskrive en linje i rommet som skjæringen mellom to ikkeparallelle plan. En linje vil derfor være mengden av punkter x,y,z som tilfredsstiller systemet


<math>a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2</math>


Her ser vi at vi kan eliminere én av variablene slik at vi får én ligning med to ukjente. F.eks. kan vi eliminere z slik at vi får en ligning på formen g(x,y)=0. Finner vi punkter x og y som tilfredsstiller denne, kan vi substituere x og y inn i en av de to opprinnelige ligningene for å finne den korresponderende z-verdien.

Parameterfremstilling av linjer i rommet

En annen måte å beskrive linjer i rommet på er via parameterfremstillinger. Da trenger vi å vite retningen på linja samt et punkt på linja. En parameterfremstilling vil da generelt være på formen


<math>\vec{r}(t)=(x(t),y(t),z(t))= \vec{r_1}t+\vec{r_0}</math>,


der <math>\vec{r_1}</math> er en (konstant) vektor som er parallell med linja, og <math>\vec{r_0}</math> er et punkt på linja. Dette kan begrunnes geometrisk: Vi tenker oss at vi starter i origo og beveger oss til punktet <math>\vec{r_0}</math>. Deretter legger vi til en vektor <math>\vec{r_1}t</math> som vi vet ligger parallelt. Ved å variere verdien av <math>t</math> varierer vi lengden av den parallelle vektoren, slik at vi hele tiden forflytter oss langs (på) linja.