1T 2022 vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
 
(20 mellomliggende versjoner av 2 brukere er ikke vist)
Linje 2: Linje 2:


[https://matematikk.net/matteprat/viewtopic.php?f=13&t=53910  Diskusjon av oppgaven på matteprat]
[https://matematikk.net/matteprat/viewtopic.php?f=13&t=53910  Diskusjon av oppgaven på matteprat]
[https://www.youtube.com/watch?v=EVg396wJmOU Videoløsning av UDL.no]


[https://matematikk.net/matteprat/download/file.php?id=4302 Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas]  
[https://matematikk.net/matteprat/download/file.php?id=4302 Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas]  
Linje 8: Linje 10:


[https://youtu.be/3gTmQ8iWjUk Videoløsning del 2 av Lektor Lainz]
[https://youtu.be/3gTmQ8iWjUk Videoløsning del 2 av Lektor Lainz]
[https://youtu.be/v81gOpRjBCI Videoløsn. del 1 av matematikk.net]




Linje 28: Linje 32:




[[File:29082022-02.png]]
[[File:29082022-05.png]]


===Oppgave 2===
===Oppgave 2===
Linje 48: Linje 52:


===Oppgave 4===
===Oppgave 4===
Først defineres en funksjon f som kvadrerer x.
Så løper løkken gjennom tallene 1,2,3 osv. Disse kvadreres og printes. Når verdien til kvadratet når 400 stopper programmet.




Programmet printer ut kvadrattallene opp til 20.
 
Programmet printer ut de 20 første kvadrattallene.


===Oppgave 5===
===Oppgave 5===
Linje 75: Linje 84:


==Oppgave 1==
==Oppgave 1==
Løser oppgaven i Geogebra.
[[File: 1P_V22_del2_1abcd.png | 1000px]]
===a)===
$V(0)=0$ (se algebrafeltet på skjermbildet). Det vil si at før tappingen starter (ved 0 minutter), så har det ikke blitt tappet ut noe vann av tanken (0 liter).
===b)===
Verdimengden til V er 2000. Jeg fant høyeste punkt på grafen, A=(40,2000), ved å bruke knappen "Ekstremalpunkt". Laveste punkt er (0,0). Verdimengden er da 2000 - 0 = 2000.
===c)===
Lager linjen y = 1000, og bruker knappen "skjæring mellom to objekt" mellom linjen og grafen til V. Får punkt B=(11.7, 1000). Det vil si at det tar 11,7 minutter før halvparten av vannet er tappet ut av tanken. Se punkt B.
===d)===
Lager punkt C=(0,V(0)) og D=(30,V(30)), og lager en linje som gå gjennom disse to punktene med knappen "linje". Finner stigningstallet til linjen med knappen "stigning". Stigningstallet er 62,5 (se verdien a1 i algebrafeltet). Svaret forteller oss at fra 0 til 30 minutter etter at tappingen har startet, tappes vannet med en gjennomsnittlig fart på 62,5 liter per minutt.
===e)===
[[File: 1P_V22_del2_1e.png | 1000px]]
Lager en glider b med kommandoen "glider(0,40,1)". Lager et punkt E=(b,V(b)) og tangenten til V i punktet E med knappen "tangenter". Viser stigningstallet til tangenten med knappen "stigning".  Flytter på glideren slik at punkt E flytter seg langs hele grafen til V, og ser om stigningstallet noen gang overstiger 105. Jeg finner at det høyeste stigningstallet er 100, når E=(0,0). Se verdien a2 i algebrafeltet.
Det vil altså aldri tappes mer enn 105 liter i løpet av ett minutt.


==Oppgave 2==
==Oppgave 2==
[[File:26082022-01.png]] [[File:26082022-02.png]]
Arket viser figurene fra 1 - 25. Figur nummeret kvadres og figuren før legges til.
===a)===
55 klosser
===b)===
1210 klosser
===c)===
Han kan lage 17 figurer og har 1279 klosser igjen.


==Oppgave 3==
==Oppgave 3==
[[File:03.09.2022-01.png]]
===a)===
Se linje 5.
===b)===
Se linje 8. Må faktorisere ut 3 fra parentesen for å få uttrykket i oppgaven.


==Oppgave 4==
==Oppgave 4==
===a)===
[[File:26082022-03.png]]
a = 1,85 og b = 0,49.
===b)===
Modellen overestimerer allerede ved 120 minutter, men man kan si at den gir et greit bilde av temperaturforløpet  de to første timene.
===c)===
Utfører regresjonen i Geogebra og får : $f(x) = -18,09 \cdot 0,98^x$
===d)===
[[File:29082022-01.png]]
f flater ut og får derved et større gyldighetsområde. T vokser hele tiden og vil avvike fra virkeligheten etter ca 120 minutter.
===e)===
$T_2(x)= -18,09 \cdot 0,98^x +20 $
$T_2(240)= -18,09 \cdot 0,98^{240} + 20 = 19,9 $ grader Celsius.


==Oppgave 5==
==Oppgave 5==
===a)===
Funksjonen har et min eller makspunkt i (1, f(1)). Stingningstall 6 for x=4 gir et minimumspunkt i (1,f(1))
$f(x)=ax^2+bx+c$
$f'(x) =2ax+b $
$1 = \frac{-b}{2a}$ og 8a + b = 6 gir  f'(x) = 2x-2
===b)===
Det betyr at c = 4. a og b har vi fra oppgave a:
$f(x)= x^2-2x+4$


==Oppgave 6==
==Oppgave 6==
===a)===
[[File:06092022-01.png]]
Linje 2: x = 0
===b)===
'Se linje 3. b = - 3 eller b = 3.
===c)===
Se linje 5 og 6.

Siste sideversjon per 22. mai 2024 kl. 17:36

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Videoløsning av UDL.no

Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas

Videoløsning del 1 av Lektor Lainz

Videoløsning del 2 av Lektor Lainz

Videoløsn. del 1 av matematikk.net


DEL EN

Oppgave 1

a)

$(x-2)(x+1) =0 $

$ x-2=0 \vee x+1=0 $

$x=2 \vee x=-1$

b)

I området fra -1 til 2 er produktet i a negativt. En mulig ulikhet blir da (x-2)(x-1) > 0. (tegn fortegnsskjema dersom du ikke ser det direkte).


Oppgave 2

$9x^2-30x +r = (3x-s)^2 = 9x^2 - 6sx +s^2 $

Ser at s må være 5 og r lik $s^2. r = 25$

Oppgave 3

Når tangens til en vinkel er $\frac 34$ betyr det at forholdene mellom katene er 3/4. Katetene kan ha lengdene 3 og 4, 6 og 8, osv.


Sinus til vinkel B kan IKKE være 3/10, fordi det er forholdet mellom motstående katet og hypotenus. Dersom katetet er 3 er hypotenusen 5 og dersom hypotenusen er 10 er katetet 6.

Katetetene kan være 6 og 8 fordi forholdet mellom dem da er 3/4.

Hypotenusen kan være kortere enn 4. dersom et katet er 0,75 og det andre er 1,0 er forholdet 3/4 og hypotenusen mindre enn 4.

Oppgave 4

Først defineres en funksjon f som kvadrerer x.

Så løper løkken gjennom tallene 1,2,3 osv. Disse kvadreres og printes. Når verdien til kvadratet når 400 stopper programmet.


Programmet printer ut de 20 første kvadrattallene.

Oppgave 5

Vertikal asymptote er nevnerens nullpunkt. Dersom nevneren er (x+2) gir det vertikal asymptote x = -2. Dersom x går mot uendelig skal f gå mot 3.

$f(x)= \frac{3x}{x+2}$ eller $f(x) = \frac{6x}{2x + 4}$ er eksempler på slike funksjoner.

Oppgave 6

a)

f(3) = 0 derfor er f delelig på (x-3)

b)

$f(0) = -9$, kan derfor utelukke grafen i A.

Dersom vi deriverer funksjonen ser man at x koordinatene til ekstremalpunktene ligger nesten like langt fra origo, på hver sin side av y aksen. Det stemmer med grafen i figur C.


DEL TO

Oppgave 1

Løser oppgaven i Geogebra.

a)

$V(0)=0$ (se algebrafeltet på skjermbildet). Det vil si at før tappingen starter (ved 0 minutter), så har det ikke blitt tappet ut noe vann av tanken (0 liter).

b)

Verdimengden til V er 2000. Jeg fant høyeste punkt på grafen, A=(40,2000), ved å bruke knappen "Ekstremalpunkt". Laveste punkt er (0,0). Verdimengden er da 2000 - 0 = 2000.

c)

Lager linjen y = 1000, og bruker knappen "skjæring mellom to objekt" mellom linjen og grafen til V. Får punkt B=(11.7, 1000). Det vil si at det tar 11,7 minutter før halvparten av vannet er tappet ut av tanken. Se punkt B.

d)

Lager punkt C=(0,V(0)) og D=(30,V(30)), og lager en linje som gå gjennom disse to punktene med knappen "linje". Finner stigningstallet til linjen med knappen "stigning". Stigningstallet er 62,5 (se verdien a1 i algebrafeltet). Svaret forteller oss at fra 0 til 30 minutter etter at tappingen har startet, tappes vannet med en gjennomsnittlig fart på 62,5 liter per minutt.

e)

Lager en glider b med kommandoen "glider(0,40,1)". Lager et punkt E=(b,V(b)) og tangenten til V i punktet E med knappen "tangenter". Viser stigningstallet til tangenten med knappen "stigning". Flytter på glideren slik at punkt E flytter seg langs hele grafen til V, og ser om stigningstallet noen gang overstiger 105. Jeg finner at det høyeste stigningstallet er 100, når E=(0,0). Se verdien a2 i algebrafeltet.

Det vil altså aldri tappes mer enn 105 liter i løpet av ett minutt.

Oppgave 2

Arket viser figurene fra 1 - 25. Figur nummeret kvadres og figuren før legges til.

a)

55 klosser

b)

1210 klosser

c)

Han kan lage 17 figurer og har 1279 klosser igjen.

Oppgave 3


a)

Se linje 5.


b)

Se linje 8. Må faktorisere ut 3 fra parentesen for å få uttrykket i oppgaven.

Oppgave 4

a)

a = 1,85 og b = 0,49.

b)

Modellen overestimerer allerede ved 120 minutter, men man kan si at den gir et greit bilde av temperaturforløpet de to første timene.

c)

Utfører regresjonen i Geogebra og får : $f(x) = -18,09 \cdot 0,98^x$

d)


f flater ut og får derved et større gyldighetsområde. T vokser hele tiden og vil avvike fra virkeligheten etter ca 120 minutter.

e)

$T_2(x)= -18,09 \cdot 0,98^x +20 $

$T_2(240)= -18,09 \cdot 0,98^{240} + 20 = 19,9 $ grader Celsius.

Oppgave 5

a)

Funksjonen har et min eller makspunkt i (1, f(1)). Stingningstall 6 for x=4 gir et minimumspunkt i (1,f(1))

$f(x)=ax^2+bx+c$

$f'(x) =2ax+b $

$1 = \frac{-b}{2a}$ og 8a + b = 6 gir f'(x) = 2x-2

b)

Det betyr at c = 4. a og b har vi fra oppgave a:

$f(x)= x^2-2x+4$

Oppgave 6

a)

Linje 2: x = 0

b)

'Se linje 3. b = - 3 eller b = 3.

c)

Se linje 5 og 6.