Fysikk 1: Forskjell mellom sideversjoner
Linje 44: | Linje 44: | ||
Kinetisk energi: $E_k = \frac 12mv^2$ | Kinetisk energi: $E_k = \frac 12mv^2$ | ||
Linje 60: | Linje 60: | ||
<tr> | <tr> | ||
<th> Arbeid: $W = F\cdot s \cdot cos \alpha$ </th> | <th> Arbeid: $W = F\cdot s \cdot cos \alpha$ </th> | ||
<th> | <th> Effekt: $P = \frac Wt $ eller $P = \frac {Fs} t = F \cdot v$ </th> | ||
Sideversjonen fra 18. feb. 2016 kl. 08:11
Viktige formler
Bevegelse
Følgende gjelder ved konstant akslerasjon:
$v [m/s]$ fart, $v_0 [m/s]$ startfart, $\overline v [m/s]$ gjennomsnittsfart, $t [s]$ tid, $a [m/s^2]$ Akslerasjon, fartsendring per sekund og $s [m]$ strekning i meter
Akslerarsjaon: $a= \frac{v-v_0}{t} \\ v = v_0 +at \quad ({\color{red}fartsformel})$ | Gjennomsnittsfart: $\overline v = \frac st \\ s= \overline vt \\ \overline v= \frac{v_0+v}{2} = \frac12(v_0+v) \\ s = \overline vt = \frac12(v_0+v)t\quad (veiformel 1)$ |
---|---|
Dersom man ønsker en veiformel med akslerasjon
kan man kombinere de to over, ved å sette inn for v i veiformel 1: $s =\frac12(v_0+v)t \\s= \frac12(v_0+v_0 +at)t \\ s=v_0t +\frac12 at^2 \quad (veiformel 2) $ |
Formel uten tiden t: $v= v_0+at \quad (fartsformel) \\ t= \frac{v-v_0}{a} \\ s= \frac 12 (v_0+v)t \quad (veiformel 1) \\ s= \frac{1}{2}(v_0+v)( \frac{v-v_0}{a}) \\ 2as = v^2-v_0^2 \quad (tidløs)$ |
Newtons lover
Masse: m [kg], akslerasjon: a [$m/s^2$], kraft: F [$\frac{kg \cdot m}{s^2} = N$] (Newton).
1. lov $\Sigma F=0$ Dersom summen av kreftene på et legeme er null, har legemet konstant fart, eller det er i ro.
2. lov $\Sigma F=ma$
3. lov: Kraft er lik motkraft (men motsatt rettet). Kraft og motkraft virker på TO FORSKJELLIGE legemer.
Energi
Kinetisk energi: $E_k = \frac 12mv^2$
Summen av kreftenes arbeid på et objekt: $W_{\Sigma F}= \frac 12 mv^2 - \frac 12 mv_0^2 = \Delta E_k$
Potensiell energi: $E_p= mgh$
Mekanisk energi: $ {\color{red}∆}E = E_k + E_p $
Bevaring av mekanisk energi: $\frac 12mv_0^2 + mgh_0 = \frac 12mv^2 + mgh$
Friksjon: $\mu = \frac RN$
Arbeid: $W = F\cdot s \cdot cos \alpha$ | Effekt: $P = \frac Wt $ eller $P = \frac {Fs} t = F \cdot v$ |
---|---|
Dersom man ønsker en veiformel med akslerasjon
kan man kombinere de to over, ved å sette inn for v i veiformel 1: $s =\frac12(v_0+v)t \\s= \frac12(v_0+v_0 +at)t \\ s=v_0t +\frac12 at^2 \quad (veiformel 2) $ |
Formel uten tiden t: $v= v_0+at \quad (fartsformel) \\ t= \frac{v-v_0}{a} \\ s= \frac 12 (v_0+v)t \quad (veiformel 1) \\ s= \frac{1}{2}(v_0+v)( \frac{v-v_0}{a}) \\ 2as = v^2-v_0^2 \quad (tidløs)$ |
Elektrisitet
Strøm: $I= \frac Qt$ [A]
Spenning: $U= \frac WQ$ Spenning mellom to punkter er arbeid delt på ladning. benevning Volt [V]
Ohms lov: $U = RI$ der R er elektrisk motstand (resistans), en materialavhengig konstant. Benevning ohm $[\Omega]$
Resistans i seriekopling: $R = R_1 + R_2 + R_3 + ....$
Akslerarsjaon: $a= \frac{v-v_0}{t} \\ v = v_0 +at \quad ({\color{red}fartsformel})$ | Gjennomsnittsfart: $\overline v = \frac st \\ s= \overline vt \\ \overline v= \frac{v_0+v}{2} = \frac12(v_0+v) \\ s = \overline vt = \frac12(v_0+v)t\quad (veiformel 1)$ |
---|---|
Dersom man ønsker en veiformel med akslerasjon
kan man kombinere de to over, ved å sette inn for v i veiformel 1: $s =\frac12(v_0+v)t \\s= \frac12(v_0+v_0 +at)t \\ s=v_0t +\frac12 at^2 \quad (veiformel 2) $ |
Formel uten tiden t: $v= v_0+at \quad (fartsformel) \\ t= \frac{v-v_0}{a} \\ s= \frac 12 (v_0+v)t \quad (veiformel 1) \\ s= \frac{1}{2}(v_0+v)( \frac{v-v_0}{a}) \\ 2as = v^2-v_0^2 \quad (tidløs)$ |