1T 2014 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
 
(72 mellomliggende sideversjoner av samme bruker vises ikke)
Linje 22: Linje 22:
==Oppgave 4==
==Oppgave 4==


$$
$x^2+x>2 \\ x^2+x-2>0$


Løser likningen:
Løser likningen:
$x^2+x-2=0 \\ x = \frac{-1}{2} \\$
 
$x^2+x-2=0 \\ x = \frac{-1\pm \sqrt{1+8}}{2} \\ x=-2 \vee x=1$
 
 
$x^2+x-2 = (x-1)(x+2)$
 
[[File:2014-h-1T-4-1.png]]
 
$x \in < \leftarrow , -2> \cup <1, \rightarrow>$


==Oppgave 5==
==Oppgave 5==
Linje 38: Linje 46:
===a)===
===a)===


$x \ [0] \cup [3, \rightarrow>$
$x \in [0] \cup [3, \rightarrow>$


f er lik null for x lik 0 og 3. For x verdier større enn tre er f positiv.
f er lik null for x lik 0 og 3. For x verdier større enn tre er f positiv.
Linje 62: Linje 70:
===b)===
===b)===


I en rettvinklent trekant er tangens definert som forholdet mellom motstående og hosliggende katet. Dersom to vinkler i trekanten er 45 grader er begge katetene like lange, og forholdet mellom dem blir en.
I en rettvinklet trekant er tangens definert som forholdet mellom motstående og hosliggende katet. Dersom to vinkler i trekanten er 45 grader er begge katetene like lange, og forholdet mellom dem blir en.


===c)===
===c)===
Linje 111: Linje 119:
===b)===
===b)===


Toppunkt er (31,32 , 297870), hvilket betyr at bakteriekulturen når sitt maksimum etter ca. 31 timer, med et antall på ca 300000.
Toppunkt er (31,32 , 297870), hvilket betyr at bakteriekulturen når sitt maksimum etter ca. 31 timer, med et antall på ca. 300000.


Skjæring med y-akse betyr at det er anntallet bakterier ved tiden null. Dette antallet er 200000. Skjæringspunktet er (0, 200000).
Skjæring med y-akse betyr at det er antallet bakterier ved tiden null. Dette antallet er 200000. Skjæringspunktet er (0, 200000).


Grafens skjæring med x-aksen betyr at alle bakteriene er døde. Sannsynligvis matmangel, eller for mye giftstoffer. Dette skjer etter ca, 57 timer. Punktet der grafen sklærer x-aksen er (56,67,  0).
Grafens skjæring med x-aksen betyr at alle bakteriene er døde. Sannsynligvis matmangel, eller for mye giftstoffer. Dette skjer etter ca, 57 timer. Punktet der grafen sklærer x-aksen er (56,67,  0).
Linje 129: Linje 137:
==Oppgave 3==
==Oppgave 3==


For å beholde oversiketen er det lurt med en systematisk oversikt. Jeg velger en krysstabell-
For å beholde oversikten er det lurt med en systematisk oversikt. Jeg velger en krysstabell:


{| width="auto"
{| width="auto"
Linje 148: Linje 156:
|-
|-
|Total
|Total
|1000
|13
|4000
|17
|5000
|30
|}
|}


===a)===
===a)===
Vi vet at eleven ikke har trafikalt grunnkurs:


P(jente | ikke trafikalt grunnkurs) = $\frac {P(jente \quad og \quad ikke \quad  trafikalt \quad grunnkurs)}{P(ikke \quad trafikalt \quad grunnkurs)}= \frac{8}{13}$


===b)===
===b)===
Velger to. "Minst en" er da den ene, eller den andre, eller begge:
P(Av to valgte har minst en trafikalt grunnkurs) = $\frac{17}{30} \cdot \frac{16}{29} + \frac{17}{30} \cdot \frac{13}{29} + \frac{13}{30} \cdot \frac{17}{29} = \frac{714}{870} \approx 0,82 = 82$ %


==Oppgave 4==
==Oppgave 4==
Vi trekker diagonalen BD. Lengden av denne finner vi ved å bruke pytagoras i trekanten ABD. Vi har to trekanter der alle sider er kjente. Bruker cosinussetningen til å finne en vinkel i trekanten BCD. Bruker så arealsetningen på hver av rekantene og legger disse sammen.
[[File:2014-h-1T-4-2.png]]
BD: $(BD)^2= (70m)^2 + (80m)^2  \\ (BD)^2 = 11300m^2 \\ BD = 106,3m$
Finner vinkel C  (kunne valgt de to andre også):
$106,3^2 = 100^2+ 70^2 - 2 \cdot 100 \cdot 70 \cdot cosC \\ cosC = \frac{106,3^2 - 100^2-70^2}{-2 \cdot 100 \cdot 70} \\ cosC = 0,257 \\ C = cos^{-1} (0,257)\\ C = 75,1^{\circ}$
Arealet av firkanten er summen av arealene til de to trekantene:
ABD: $A= \frac {70m \cdot 80m}{2} = 2800m^2$
BCD: $A= \frac 12 \cdot 70m \cdot 100m \cdot sin 75,1 = 3382,3m^2$
Areale av firkanten ABCD blir da $2800m^2 + 3382,3 m^2 = 6182,3 m^2$


==Oppgave 5==
==Oppgave 5==
Linje 164: Linje 195:


===a)===
===a)===
[[File:2014-h-1T-5a-2.png]]


===b)===


===b)===
$(BC)^2 = (AB)^2 + (AC)^2 -2 \cdot AB \cdot AC \cdot Cos A \\ (AB)^2 + 81- 18 Cos A \cdot(AB) -36 =0 \\ (AB)^2 - 13,79(AB) + 45 =0 $
 
Det gir AB = 5,3 cm, eller AB = 8,5cm.


==Oppgave 6==
==Oppgave 6==
Linje 172: Linje 207:


===a)===
===a)===
[[File:1T-2014h-6a.png]]
$f(x)= ax+4$
Dersom a = -2 tangerer grafen til f grafen til g i ett punkt (1,2), dvs. en løsning. Dersom a <- 2 har likningen f(x) = g(x) ingen løsning. Dersom a > - 2 har likningen to løsninger, bortsett fra a = 0, som gir en løsning.


===b)===
===b)===
$ a\neq 0: \\f(x)=g(x) \\ ax+4 = \frac 2x \\ ax^2+4x-2 =0$
Bruker abc- formelen og får 16 + 8a under rottegnet. Når uttrykket er negativt har likningen ingen løsning. Når uttrykket er null har det en løsning. Når uttrykket er positivt har det to løsninger.
$16+8a=0 \\ a= -2\\ a = -2 \rightarrow  en\quad løsning \\ a< -2 \rightarrow ingen \quad løsning \\ a> -2 \rightarrow to \quad løsninger (a \neq 0)$
a lik null gir:
$\frac 2x = 4 \\ x= \frac 12$
f er parallell med x-aksen og det er en skjæring, i punktet $( \frac 12 , 4)$


==Oppgave 7==
==Oppgave 7==
Linje 179: Linje 231:


===a)===
===a)===
[[File:2014-h-1T-7-2.png]]
Koordinatene til P er (x,y). P ligger på linjen. Linjen har konstantledd lik 4 og stigningstall $- \frac 45$, dvs. $y= - \frac 45 x +4$ som da blir y koordinaten til P.


===b)===
===b)===
Arealet av trekanten ABP skal være halvparten av arealet til trekanten ABC. Arealet av trekanten ABC er 10. Grunnlinjen AB er den samme, 5 i begge trekanter. Høyden i trekant ABP er y.
$A= \frac{g \cdot h}{2} \\ 5 = \frac{5(- \frac45x+4)}{2} \\ 5= -2+10 \\ x= \frac 52$
som gir y = 2.  $P( \frac 52 , 2) $, for at arealet av trekanten ABP skal være halvparten av ABC.
Dette kan sjekkes i Geogebra, ved å dra P litt oppover, og måle arealet av skravert trekant. Slik det er tegnet har P en litt for stor x verdi, med tilhørende for liten y verdi,


==Oppgave 8==
==Oppgave 8==
Når Per er halvveis opp, har Kari tilbakelagt x trinn. Per er alltid 52 trinn høyere.
$\frac y2= x+52$
y - antall trinn i tårnet.
x - Karis trinn når Per er halvveis.
Når Per er oppe er Karis posisjon $x+ \frac y2$. I følge Per er hun da tre ganger høyere enn hun var når Per var halvveis.
$3x= x+ \frac y2$
Vi har nå to likninger med to ukjente. Det er y vi er interessert i:
<math> \left[ \begin{align*}\frac y2=x+52 \\ 3x=x+ \frac y2  \end{align*}\right] </math>
<math> \left[ \begin{align*} \frac y2=x+52  \\ y=4x]  \end{align*}\right] </math>
<math> \left[ \begin{align*} \frac{4x}{2}= x+52\\ x=52 \end{align*}\right] </math> 
<math> \left[ \begin{align*} y=4x= 208 \end{align*}\right] </math>
Det er 208 trappetrinn i tårnet.


==Oppgave 9==
==Oppgave 9==


===a)===
===a)===
Arealet av et kvadrat med sider x, er $x^2$
Arealet av et rektangel med sider x og b er xb.
Siden figuren i oppgaven består av to slike figurer og har areal c må
$x^2 + bx = c$
x vil da være en positiv løsning av andregradslikningen $x^2 + bx -c =0$


===b)===
===b)===
Kvadratet ABCD: $(x+ \frac b2) (x+ \frac b2) = x^2 +\frac{xb}{2} + \frac{xb}{2} + \frac{b^2}{4} = x^2+ xb + \frac{b^2}{4} = c + \frac{b^2}{4}$
De to første leddene i svaret,  tilsvarer c i oppgave a. Sees også fra figur tre.


===c)===
===c)===
x er en del av sidene $(x+ \frac b2)$ som utspenner kvadratet ABCD. Dette er en lengde, og man snakker normalt ikke om negative lengder. c er arealet av rektangelet i a.


===d)===
===d)===
$ (x+ \frac b2)^2 = c + \frac {b^2}{4} \\ x+ \frac b2 = \sqrt{ \frac{4c + b^2}{4}} \\ x= - \frac b2 + \frac{\sqrt{b^2+4c}}{2} \\ x = \frac{-b+ \sqrt{b^2+4c}}{2}$

Siste sideversjon per 10. mar. 2015 kl. 06:36


DEL EN

Oppgave 1

$25000000000 \cdot 0,0005 = 2,5 \cdot 10^{10} \cdot 5 \cdot 10^{-4} = 12,5 \cdot 10^6 = 1,25 \cdot 10^7$

Oppgave 2

$2^{2+ \frac x2} = 16 \\2^{2+ \frac x2} = 2^4 \\2 + \frac x2 = 4 \\ 4+x=8 \\ x=4$

Oppgave 3

$lg(2x-3)=0 \\ 10^{lg(2x-3)} = 10^0 \\ 2x-3 =1 \\ x=2$

Oppgave 4

$x^2+x>2 \\ x^2+x-2>0$

Løser likningen:

$x^2+x-2=0 \\ x = \frac{-1\pm \sqrt{1+8}}{2} \\ x=-2 \vee x=1$


$x^2+x-2 = (x-1)(x+2)$

$x \in < \leftarrow , -2> \cup <1, \rightarrow>$

Oppgave 5

Det er to muligheter, gutt - jente og jente - gutt:

$P(en \quad av \quad hver) = \frac{6}{10} \cdot \frac{4}{9} + \frac{4}{10} \cdot \frac{6}{9} = \frac{8}{15} $

Oppgave 6

a)

$x \in [0] \cup [3, \rightarrow>$

f er lik null for x lik 0 og 3. For x verdier større enn tre er f positiv.

Den deriverte til f er negativ fra x = 0 til x = 2. f avtar i dette området.

b)

Gjennomsnittlig vekstfart:

$\frac{\Delta x}{\Delta y} = \frac{-8 -0}{2} = -4$

Oppgave 7

$\frac {3x}{x+3} - \frac {3}{x-3} - \frac {x^2-12x+9}{x^2-9} = \\ \frac{3x(x-3)}{x+3} - \frac {3(x+3)}{(x-3)(x+3)} - \frac {x^2-12x+9}{(x+3)(x-3)} =\\ \frac {3x^2-9x-3x-9-x^2+12x-9}{(x+3)(x-3)} = \\ \frac {2x^2-18}{(x+3)(x-3)} = \\ \frac {2(x+3)(x-3)}{(x+3)(x-3)} = 2$

Oppgave 8

a)

$ ( \frac 25 )^{-1} = \frac {1}{ \frac 25} = \frac 52 $ som er større enn 2.

b)

I en rettvinklet trekant er tangens definert som forholdet mellom motstående og hosliggende katet. Dersom to vinkler i trekanten er 45 grader er begge katetene like lange, og forholdet mellom dem blir en.

c)

log 100 = 2, derfor er log 200 større enn to. log 1000 = 3, så log 200 er et sted mellom 2 og 3.

Oppgave 9)

Trekantene ABC og ADE er formlike. De har en felles vinkel, to felles sider og linjestykkene DE og BC er parallelle.

a)

AC: $A= \frac{g \cdot h}{2} \Rightarrow 16 = \frac{AC \cdot 8}{2} \\AC = \frac{16 \cdot 2}{8} \\ AC = 4$


AD: $\frac{AD}{8} = \frac{3}{4} \\ AD = \frac{3 \cdot 8}{4} \\ AD = 6$

b)

$BC - DE = \sqrt{8^2+4^2} - \sqrt{6^2+3^2}\\ BC - DE = \sqrt{80} -\sqrt{45} \\ BC - DE = \sqrt{16 \cdot 5} - \sqrt{9 \cdot 5} \\ BC - DE = 4 \sqrt 5 - 3 \sqrt 5 \\BC - DE = \sqrt 5$

Oppgave 10

a)

$f´(x) = - \frac 12x^{- \frac 12 - 1} = - \frac 12 x^{- \frac 12 - \frac 22} = - \frac 12 x ^{- \frac 32} = - \frac{1}{2x^{\frac 32}} = - \frac{1}{2 \sqrt{x^3}}$

b)

$g(x) = \frac {1}{x^2} = x^{-2} \\ g´(x) = -2x^{-3} = - \frac{2}{x^3}$


$h(x)= \sqrt x = x^{ \frac 12} \\ h´(x) = \frac 12 x^{- \frac 12} = \frac{1}{2 \sqrt x}$


DEL TO

Oppgave 1

Den lineære sammenhengen er sånn ca: y = 94,56x + 200,25.

Oppgave2

a)

b)

Toppunkt er (31,32 , 297870), hvilket betyr at bakteriekulturen når sitt maksimum etter ca. 31 timer, med et antall på ca. 300000.

Skjæring med y-akse betyr at det er antallet bakterier ved tiden null. Dette antallet er 200000. Skjæringspunktet er (0, 200000).

Grafens skjæring med x-aksen betyr at alle bakteriene er døde. Sannsynligvis matmangel, eller for mye giftstoffer. Dette skjer etter ca, 57 timer. Punktet der grafen sklærer x-aksen er (56,67, 0).

c)

Det er svart på i delspørsmål b.

d)

Den momentane veksten i time 40 er det samme som f `(40):

$f(x)= -0,1x^4+5,5x^3-150x^2+5500x+200000 \\ f' (x)= -0,4x^3+ 16,5x^2-300x+5500 \\ f' (40) = -0,4 \cdot 40^3+16,5 \cdot 40^2 -300 \cdot 40 + 5500 \\ f'(40)= -5700$

Oppgave 3

For å beholde oversikten er det lurt med en systematisk oversikt. Jeg velger en krysstabell:

GUTT JENTE Total
Trafikalt 8 9 17
Ikke trafikalt 5 8 13
Total 13 17 30

a)

Vi vet at eleven ikke har trafikalt grunnkurs:

P(jente | ikke trafikalt grunnkurs) = $\frac {P(jente \quad og \quad ikke \quad trafikalt \quad grunnkurs)}{P(ikke \quad trafikalt \quad grunnkurs)}= \frac{8}{13}$

b)

Velger to. "Minst en" er da den ene, eller den andre, eller begge:

P(Av to valgte har minst en trafikalt grunnkurs) = $\frac{17}{30} \cdot \frac{16}{29} + \frac{17}{30} \cdot \frac{13}{29} + \frac{13}{30} \cdot \frac{17}{29} = \frac{714}{870} \approx 0,82 = 82$ %

Oppgave 4

Vi trekker diagonalen BD. Lengden av denne finner vi ved å bruke pytagoras i trekanten ABD. Vi har to trekanter der alle sider er kjente. Bruker cosinussetningen til å finne en vinkel i trekanten BCD. Bruker så arealsetningen på hver av rekantene og legger disse sammen.

BD: $(BD)^2= (70m)^2 + (80m)^2 \\ (BD)^2 = 11300m^2 \\ BD = 106,3m$


Finner vinkel C (kunne valgt de to andre også):

$106,3^2 = 100^2+ 70^2 - 2 \cdot 100 \cdot 70 \cdot cosC \\ cosC = \frac{106,3^2 - 100^2-70^2}{-2 \cdot 100 \cdot 70} \\ cosC = 0,257 \\ C = cos^{-1} (0,257)\\ C = 75,1^{\circ}$

Arealet av firkanten er summen av arealene til de to trekantene:

ABD: $A= \frac {70m \cdot 80m}{2} = 2800m^2$

BCD: $A= \frac 12 \cdot 70m \cdot 100m \cdot sin 75,1 = 3382,3m^2$

Areale av firkanten ABCD blir da $2800m^2 + 3382,3 m^2 = 6182,3 m^2$

Oppgave 5

a)

b)

$(BC)^2 = (AB)^2 + (AC)^2 -2 \cdot AB \cdot AC \cdot Cos A \\ (AB)^2 + 81- 18 Cos A \cdot(AB) -36 =0 \\ (AB)^2 - 13,79(AB) + 45 =0 $

Det gir AB = 5,3 cm, eller AB = 8,5cm.

Oppgave 6

a)

$f(x)= ax+4$

Dersom a = -2 tangerer grafen til f grafen til g i ett punkt (1,2), dvs. en løsning. Dersom a <- 2 har likningen f(x) = g(x) ingen løsning. Dersom a > - 2 har likningen to løsninger, bortsett fra a = 0, som gir en løsning.

b)

$ a\neq 0: \\f(x)=g(x) \\ ax+4 = \frac 2x \\ ax^2+4x-2 =0$

Bruker abc- formelen og får 16 + 8a under rottegnet. Når uttrykket er negativt har likningen ingen løsning. Når uttrykket er null har det en løsning. Når uttrykket er positivt har det to løsninger.

$16+8a=0 \\ a= -2\\ a = -2 \rightarrow en\quad løsning \\ a< -2 \rightarrow ingen \quad løsning \\ a> -2 \rightarrow to \quad løsninger (a \neq 0)$


a lik null gir: $\frac 2x = 4 \\ x= \frac 12$

f er parallell med x-aksen og det er en skjæring, i punktet $( \frac 12 , 4)$

Oppgave 7

a)

Koordinatene til P er (x,y). P ligger på linjen. Linjen har konstantledd lik 4 og stigningstall $- \frac 45$, dvs. $y= - \frac 45 x +4$ som da blir y koordinaten til P.

b)

Arealet av trekanten ABP skal være halvparten av arealet til trekanten ABC. Arealet av trekanten ABC er 10. Grunnlinjen AB er den samme, 5 i begge trekanter. Høyden i trekant ABP er y.

$A= \frac{g \cdot h}{2} \\ 5 = \frac{5(- \frac45x+4)}{2} \\ 5= -2+10 \\ x= \frac 52$

som gir y = 2. $P( \frac 52 , 2) $, for at arealet av trekanten ABP skal være halvparten av ABC.

Dette kan sjekkes i Geogebra, ved å dra P litt oppover, og måle arealet av skravert trekant. Slik det er tegnet har P en litt for stor x verdi, med tilhørende for liten y verdi,

Oppgave 8

Når Per er halvveis opp, har Kari tilbakelagt x trinn. Per er alltid 52 trinn høyere.

$\frac y2= x+52$

y - antall trinn i tårnet.

x - Karis trinn når Per er halvveis.

Når Per er oppe er Karis posisjon $x+ \frac y2$. I følge Per er hun da tre ganger høyere enn hun var når Per var halvveis.

$3x= x+ \frac y2$

Vi har nå to likninger med to ukjente. Det er y vi er interessert i:

<math> \left[ \begin{align*}\frac y2=x+52 \\ 3x=x+ \frac y2 \end{align*}\right] </math>

<math> \left[ \begin{align*} \frac y2=x+52 \\ y=4x] \end{align*}\right] </math>

<math> \left[ \begin{align*} \frac{4x}{2}= x+52\\ x=52 \end{align*}\right] </math>

<math> \left[ \begin{align*} y=4x= 208 \end{align*}\right] </math>

Det er 208 trappetrinn i tårnet.

Oppgave 9

a)

Arealet av et kvadrat med sider x, er $x^2$

Arealet av et rektangel med sider x og b er xb.

Siden figuren i oppgaven består av to slike figurer og har areal c må

$x^2 + bx = c$

x vil da være en positiv løsning av andregradslikningen $x^2 + bx -c =0$

b)

Kvadratet ABCD: $(x+ \frac b2) (x+ \frac b2) = x^2 +\frac{xb}{2} + \frac{xb}{2} + \frac{b^2}{4} = x^2+ xb + \frac{b^2}{4} = c + \frac{b^2}{4}$

De to første leddene i svaret, tilsvarer c i oppgave a. Sees også fra figur tre.

c)

x er en del av sidene $(x+ \frac b2)$ som utspenner kvadratet ABCD. Dette er en lengde, og man snakker normalt ikke om negative lengder. c er arealet av rektangelet i a.

d)

$ (x+ \frac b2)^2 = c + \frac {b^2}{4} \\ x+ \frac b2 = \sqrt{ \frac{4c + b^2}{4}} \\ x= - \frac b2 + \frac{\sqrt{b^2+4c}}{2} \\ x = \frac{-b+ \sqrt{b^2+4c}}{2}$