Potenser

Fra Matematikk.net
Hopp til:navigasjon, søk

Potenser uten brøkeksponent

Innledning

1000 kan skrives som 10 · 10 · 10 og 100 som 10 · 10. Noen ganger ønsker man å skrive tallene på denne måten. Å skrive 1.000.000 som 10 · 10 · 10 · 10 · 10 · 10 er både plasskrevende og tungvindt. Man innfører derfor en ny måte å skrive tall på, og vi kalle den for potens.

Eksempel 1


$1000 = 10\cdot 10\cdot10 = 10^3$

En potens består av et grunntall og en eksponent.
Grunntallet i dette tilfellet er 10 og eksponenten er 3. Eksponenten forteller oss hvor mange ganger grunntallet skal ganges med seg selv.


Eksempel 2


Tall 100000 10000 1000 100 10 1 0,1 0,01 0,001
Potens <math> 10^5 </math> <math> 10^4 </math> <math>10^3 </math> <math>10^2 </math> <math>10^1 </math> <math>10^0 </math> <math>10^ {-1} </math> <math>10^{-2} </math> <math>10^{-3} </math>

Potensene er alle tierpotenser, fordi grunntallet er 10. Eksponenten varierer fra 5 til -3.




Eksempel 3

<math>3^6 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 729</math>

<math>a^4 = a \cdot a \cdot a \cdot a</math>

<math>10^2 = 10 \cdot 10 = 100</math>

<math>10^9 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot10 \cdot 10 \cdot 10 = 1 000 000 000</math>


Som man ser fra eksempel tre kan potenser ha andre grunntall enn ti.

Regneregler for potenser uten brøkesponent

Reglene nedenfor gjelder kun når potensene har samme grunntall.

Multiplikasjon av potenser

Dersom man skal multiplisere <math>4^3</math> med <math>4^4</math> får man;<math>4^3\cdot 4^4= 4\cdot4\cdot4\cdot4\cdot4\cdot4\cdot4 = 4^{3+4}</math>

Den generelle regel for potensmultiplikasjon er:


<math>a^n \cdot a^m = a^{n+m}</math>


Eksempel 4

<math>a^3 \cdot a^2=a^{3+2} = a^5</math>


Test deg selv

Divisjon av potenser

Den generelle regel for potensdivisjon er:

<math> \frac{a^n}{a^m} = a^{n-m}</math>


Eksempel 5

<math> \frac{a^3}{a^2} =a^{3-2} = a^1 =a</math>





Test deg selv

Potens av potenser

<math> (a^n)^m = a^{n\cdot m}</math>


Eksempel 6


<math> (a^3)^2=a^{3 \cdot 2}= a^6</math>



Test deg selv

Tall i nulte

Alle tall (og bokstaver) opphøyd i null er per. definisjon lik 1.


<math> a^0=1</math>


Eksempel 7


<math> \frac{x^5 \cdot x^2}{x^7} = x^{5+2-7}=x^0=1 </math>


Test deg selv

Negativ eksponent

<math> a^{-n}= \frac{1}{a^n}</math>


Eksempel 8


<math> 2^{-3}= \frac{1}{2^3} =\frac{1}{8}</math>





Test deg selv

Divisor og divident med samme eksponent og forskjellig grunntall

<math> \frac{a^m}{b^m} = (\frac{a}{b})^m </math>


Eksempel 9


<math> \frac{2^5}{7^5} = (\frac{2}{7})^5 </math>



Test deg selv

Faktorer med samme eksponent og forskjellige grunntall

<math> a^m \cdot b^m = (ab)^m </math>


Eksempel 10


<math> 3^5 \cdot x^5 = (3x)^5 </math>



Test deg selv

Sammensatte problemer

Ofte får man regnestykker der man må kombinere to eller flere regneregler. Her er et par eksempler:

Eksempel 11


<math> \frac{(3^5)^{-2} \cdot 3^{4}}{9^{-1}} = \frac{3^{-10} \cdot 3^{4}}{3^{-2}} = 3^{-10+4-(-2)} = 3^{-4}= \frac{1}{3^4} = \frac{1}{81} </math>


Eksempel 12

<math> \frac{(a^2b^4)^{3} \cdot b \cdot (a^{-2}b^5)^{-1}}{a^{-2}b^9} = \frac{a^6b^{12} \cdot b \cdot a^{2}b^{-5}}{a^{-2}b^9} = a^{6+2-(-2)}b^{12+1+(-5)-9} = a^{10}b^{-1} = \frac {a^{10}}{b} </math>






Test deg selv



Kvadratrot

Kvadratroten av et tall m, er et tall n som ganget med seg selv gir m, og skrives $ \sqrt {m} $

Hva er kvadratroten av 4? Tallet som ganget med seg selv gir 4 er 2. Det skrives slik:

<math>\sqrt {4}= \sqrt {2 \cdot 2} = 2 </math>

Mer generelt: dersom n·n = m så er: <math>\sqrt{m}= \sqrt{n \cdot n} = n </math>

Man kan ikke ta kvadratroten av et negativt tall.


Ut fra navnet kvadratrot er det naturlig å tro et det er en sammenheng mellom kvadratrot og kvadrat. La oss se!

Kvadrat.PNG

Et kvadrat har sidekanter med lengde k.

Arealet av kvadratet er k · k, eller k <math>^2</math>. Dersom man setter k = 10 cm betyr det at arealet av kvadratet er 100cm <math>^2</math>. Dersom man kjenner arealet av et kvadrat kan vi bruke kvadratroten til å finne lengden av sidekantene.

Et kvadrat med areal 81 cm <math>^2</math> har sidekanter med lengde:

<math>L = \sqrt{81cm^2}=9cm</math>

Kvadratroten kalles av og til for andreroten og kan også skrives slik:

<math> \sqrt{x}=\sqrt[2]{x}</math>
Det er nyttig å vite dette, men man bruker <math> \sqrt{x}</math> når man ønsker å skrive kvadratroten av x.


Test deg selv

n'terot

På samme måten som man kan ta kvadratroten, eller andreroten av at tall, er det også mulig å ta tredjeroten. Tenk deg en terning med sidekanter k. Vi setter k = 5cm. Volumet av terningen blir V = k <math>^3</math> =k · k · k = 5cm · 5cm · 5cm = 125cm <math>^3</math>.

Volum kube.PNG


Tredjeroten, eller kubikkroten som den også kalles, kan man bruke til å finne sidekanten av en terning dersom man kjenner volumet. Eksemplet over løser man på følgende måte:

<math>\sqrt[3]{124cm^3}</math>

Når man skal finne tredjeroten jakter vi på det tallet som, ganget med seg selv tre ganger, har et produkt tilsvarende tallet under rottegnet. Vi kan skrive et generelt utrykk slik:

<math>\sqrt[n]{a}</math>

Her må n være et helt positivt tall. Dersom n = 2 (kvadratrot) pleier vi utelate 2 - tallet.


<math>\sqrt[4]{16} = \sqrt[4]{2 \cdot2 \cdot2 \cdot 2} =2 </math>
<math>\sqrt[5]{x^5} = \sqrt[5]{x \cdot x \cdot x \cdot x \cdot x} =x </math>


Test deg selv

Rot som potens & brøk eksponent

Regneregler

$ \sqrt[n]{a}= a^{\frac{1}{n}} $



Eksempel 13

$ \sqrt [5]{32}= 32^{\frac{1}{5}} = (2^5) ^{\frac 1 5} =2 $


$a^{\frac{m}{n}}= \sqrt[n]{a^m} = (\sqrt[n]{a})^m $


Eksempel 14

$ 27^{\frac{2}{3}}= \sqrt[3]{27^2} = (\sqrt[3]{27})^2 = 3^2 = 9$


$(ab)^{\frac1n}=\sqrt[n]{a \cdot b} =\sqrt[n]{a}\cdot \sqrt[n]{b} $



Eksempel 15


$ (16x^8)^{\frac14}=\sqrt[4]{16 \cdot x^8} =\sqrt[4]{16}\cdot \sqrt[4]{x^8}
=\sqrt[4]{2 \cdot 2\cdot 2 \cdot2}\cdot \sqrt[4]{x \cdot x \cdot x\cdot x\cdot x \cdot x \cdot x \cdot x} = 2x^2 $



$( \frac ab)^{\frac 1n} =\sqrt[n]{\frac ab}= \frac{\sqrt[n]{a}}{\sqrt[n]{a}} $



Eksempel 16


$ ( \frac {8}{27})^{\frac 13} =\sqrt[3]{\frac {8}{27}}= \frac{2}{3} $




Test deg selv regel 1

Test deg selv regel 2

Test deg selv regel 3

Test deg selv regel 4

Samensatte problemer

Ofte er en kombinasjon av flere regler nødvendig for å løse et problem:

Eksempel 17


Skriv <math> \sqrt{a} \cdot a^{\frac{2}{3}} \cdot a^{- \frac {1}{6}}</math> enklest mulig.


<math> \sqrt{a} \cdot a^{\frac{2}{3}} \cdot a^{- \frac {1}{6}} = a^{\frac{1}{2}+ \frac {2}{3} - \frac {1}{6}} = a^{\frac{3}{6}+ \frac {4}{6} - \frac {1}{6}} = a^{\frac{6}{6}} = a </math>


Eksempel 18


<math> \frac{\sqrt[3]{a} \cdot \sqrt[4]{a} } {( \sqrt[12]{a})^5 } = \frac{a^{\frac13} \cdot a^ {\frac14} } {a^{\frac{5}{12}} } = a^{\frac13+\frac14-\frac{5}{12}}= a^{\frac{4}{12}+\frac{3}{12}-\frac{5}{12}}= a^{\frac{2}{12}} = a^{\frac{1}{6}}= \sqrt[6]{a} </math>


Eksempel 19


<math> \frac {(3a)^{\frac12} \cdot (3\sqrt{a})^{\frac{2}{3}}}{a^{-\frac 12}\cdot (3a^5)^{\frac16}} = 3^{\frac{1}{2}+ \frac {2}{3} - \frac {1}{6}}\cdot a^{\frac{1}{2}+ \frac {2}{6} -(- \frac {1}{2})- \frac56} = 3^{\frac{3}{6}+ \frac {4}{6} - \frac {1}{6}}\cdot a^{\frac{3}{6}+ \frac {2}{6} + \frac {3}{6}- \frac56} = 3 \cdot a^{ \frac 12} = 3 \cdot \sqrt a </math>


Test deg selv

Standardform

Det er plassbesparende å skrive store og små tall på standardform.

Man kan skrive 100 som <math>10^2</math>, men hva med 300? 300 kan skrives som <math>3 \cdot 100</math>, som kan skrives som <math>3 \cdot 10^2</math>. På samme måte kan for eksempel 320 skrives som <math>3,2 \cdot 10^2</math>.

Dette kaller man standardform.

Generelt ser formelen slik ut:

<math> \pm k \cdot10^n </math>

Der n er et helt tall og 1≤ k < 10.


Eksempel 20:


Skriv 320000 på standardform.

Løsning:

Komma flyttes fem plasser mot venstre og man får

<math>3,2 \cdot 10^5</math>


Eksempel 21:


Skriv 0,00000012 på standardform.

Løsning:

Komma flyttes syv plasser mot høyre og man får

<math>1,2 \cdot 10^{-7}</math>


Eksempel 22:
For å ionisere et hydrogenatom trengs det en energimengde på 0,000 000 000 000 000 00218

Joule.

På standardform blir det <math>2,18 \cdot 10^{-18}</math>Joule.

Enkelte kalkulatorer skriver det som 2,18E-18


Eksempel 23:


Utfør multiplikasjonen og skriv på standardform: <math>2,5 \cdot 10^{4} \cdot 5000</math>

Løsning:

<math>2,5 \cdot 10^{4} \cdot 5,0 \cdot 10^3 = 2,5 \cdot 5,0 \cdot 10^{4} \cdot 10^3 = 12,5 \cdot 10^{4+3} =12,5 \cdot 10^{7} </math>

Legg merke til at man multipliserer tallene foran tierpotensene for seg, og brukerer regneregler for potenser på tierpotensene. Svaret over er ikke på standardform fordi 12,5 er større enn 10. Man flytter komma en plass mot venstre og øker eksponenten med en. Da får man at:

<math>12,5 \cdot 10^{7} = 1,25 \cdot 10^{8} </math>


Eksempel 24:


For å regne ut eller forenkle, der man har flere tall på standardform i samme uttrykk, bruker man potensreglene:

<math>\frac{2\cdot 10^{-23}\cdot 6 \cdot 10^{47}}{8 \cdot 10^{-5}}= \frac{2 \cdot 6}{8} \cdot 10^{-23+47-(-5)}=\frac{12}{8}\cdot 10^{29}=1,5 \cdot 10^{29}</math>