Geometri I

Fra Matematikk.net
Hopp til:navigasjon, søk

Lengdemål

En lengde er gitt ved et måltall og en enhet. Enheten kalles for benevning. Eksempler på enheter er meter (m), desimeter (dm), centimeter (cm) og millimeter (mm). Vi har følgende sammenheng: 1m = 10dm = 100cm = 1000mm

Tallinjen 11.png


Skal man arbeide med flere lengder er det viktig at alle har samme enhet. Vi går fra en enhet til en mindre enhet ved å multiplisere måltallet med 10. Motsatt vei dividerer vi med 10. Ønsker man for eksempel å gå fra meter til centimeter må man multiplisere med 10 to ganger.

Line 11.png

For større lengder har vi enhetene kilometer (km) og mil. 1km = 1000m = 0,1mil. 1 mil = 10km

Eksempel 1 :


Hvor mange centimeter er 2,7 meter?

Man ganger med 10, to ganger og får:

<math> 2,7m \cdot 10 = 27dm \\ 27dm \cdot 10 = 270cm </math>

Du kan selfølgelig gange med 100 en gang, det blir det samme som å gange med 10 to ganger.


Eksempel 2:


Hvor mange meter er 912 milimeter?

Du deler på 10 tre ganger (eller på 1000 en gang)

<math>912mm:10 = 91,2cm \\ 91,2cm: 10 = 9,12dm \\9,12dm:10=0,912m </math>



Test deg selv

Areal- flatemål

Et areal er gitt ved et måltall og en enhet. Enheten kalles for benevning. Eksempler på enheter er kvadratmeter <math> [m^2]</math> , kvadratdesimeter <math> [dm^2]</math>, kvadratcentimeter <math> [cm^2]</math> og kvadratmillimeter <math> [mm^2]</math>. Vi har følgende sammenheng: <math>1m^2 = 100dm^2 = 10000cm^2 = 1000000mm^2</math>

Areal 1.png


Skal man arbeide med flere areal er det viktig at alle har samme enhet. Vi går fra en enhet til en mindre enhet ved å multiplisere måltallet med 100. Motsatt vei dividerer vi med 100. Ønsker man for eksempel å gå fra kvadratmeter til kvadratcentimeter må man multiplisere med 100 to ganger.

Flate tab 1.png

Eksempel 3:


Hvor mange kvadratcensimeter er 12 kvadratdesimeter?

Man ganger med hundre og får <math>1200cm^3</math>

Eksempel 4:


Hvor mange kvadratdesimeter er 54000 kvadratmilimeter?

Man deler på 100 to ganger og får

<math> 54000mm ^2:100 = 540cm^2 \\ 540cm^2:100 = 5,4 dm^2</math>


Test deg selv


For større arealer har vi følgende enheter: <math>ar = 100 m^2, daa = dekar = 1 000 m^2, ha = hektar = 10 000 m^2, km^2 = kvadratkilometer = 1 000 000 m^2</math>.

Volum - rommål

Et volum er gitt ved et måltall og en enhet. Enheten kalles for benevning. Eksempler på enheter er kubikkmeter <math> [m^3]</math> , kubikkdesimeter <math> [dm^3]</math>,kubikkcentimeter <math> [cm^3]</math> og kubikkmillimeter <math> [mm^3]</math>. Vi har følgende sammenheng: <math>1m^3 = 1000dm^3 = 1000000cm^3 = 1000000000mm^3</math>

Kube 1.PNG


Skal man arbeide med flere volum er det viktig at alle har samme enhet. Vi går fra en enhet til en mindre enhet ved å multiplisere måltallet med 1000. Motsatt vei dividerer vi med 1000. Ønsker man for eksempel å gå fra kubikkmeter til kubikkcentimeter må man multiplisere med 1000 to ganger.

Vol tab 1.png

Når man regner ut et volum regner vi med en eller flere lengder. Når det arbeides med flere lengder må alle ha samme enhet. Se avsittet foran, om lengder.

Eksempel 5:


Hvor mange kubikkcentimeter er 0,26 kubikkmeter?

Man ganger med 1000 to ganger og får

<math>0,26m^3 \cdot 1000 = 260dm^3 \\ 260dm^3 \cdot 1000 = 260000 cm^3 </math>


Eksempel 6:


Hvor mange kubikkdesimeter er 12 kubikkcentimeter?

Man deler på 1000 og får

<math>12cm^3:1000= 0,012 dm^3</math>


Test deg selv


Fra kubikk til liter - og motsatt

Du trenger kun å huske en ting:

1 liter = <math>1 dm^3</math>.

Nedenfor finer du en tabell som viser samenhengen.


hl l dl cl ml <math>m^3</math> <math>dm^3</math> <math>cm^3</math> <math> mm^3</math>
1 100 1000 10 000 100 000 0,1 100 100 000 100 000 000
0,01 1 10 100 1000 0,001 1 1000 1000 000
0,001 0,1 1 10 100 0,0001 0,1 100 100 000



Eksempel 7:


En flaske inneholder 112 centiliter (cl) med saft. Hvor mange kubikkdesimeter er det?

112 cl er 1,12 liter som er 1,12<math>dm^3</math>


Eksempel 8:

Thor fyller bensintanken på mopeden med 7500 kubikkcentimeter bensin. Hvor mange liter er det?

<math> 7500cm^3=7,5dm^3=7,5l</math>


Test deg selv

Punkt

Et punkt markeres med et kryss. Punktet P kan markeres slik:

Punkt 1.png

Linjer

Linjen m har uendelig utstrekning, den fortsetter i begge retninger. Linjestykket AB ligger på linjen n. Linjen n er uendelig lang, men linjestykket AB har en målbar lengde. Linjen o er uendelig lang, det er også linjestrålen som slutter i C.

Dette kan markeres slik:

Linjer 1.png


Parallelle Linjer

Dersom linjen l er parallell med linjen m betyr det at disse to linjene aldri vil krysse hverandre. Vi skriver det slik:

m || n

Linjene kan se slik ut:

Paralinjer 1.png


Dersom linjene er parallelle betyr det at avstanden mellom dem er den samme hele veien. Det betyr at avstanden b1 er den samme som b2.

Vinkler

Rette linjer som ikke er parallelle vil før eller siden krysse hverandre (i planet). Da vil de danne en vinkel. Symbolet for en vinkel er<math>\angle </math> . Dette tegnet må ikke forveksles med < som betyr "mindre enn". Vinkelen ABC kan skrives slik: ABC, eller noen ganger bare som B. Vinkelen kan se slik ut:

Vink 1.png


En vinkel består av to vinkelbein og et toppunkt. Toppunktet er der hvor vinkelbeina møtes (eller krysser hverandre). AB og BC er vinkelbein og B er toppunktet. I denne figuren kunne vi kalt vinkelen for B, men vi skal senere se at vi av og til må kalle vinklene med vinkelbein, altså ABC, for å unngå missforståelser.


Lengde måles i meter og tid i sekunder eller timer. Vinkler måles i grader. Dette har ingen ting med temperatur å gjøre, men symbolet vi bruker er det samme. 30 grader skrives 30º. En sirkel måler 360°. Gradeskiven din (også kalt transportør) kan du bruke når du tegner eller måler vinkler. Den går vanligvis opp til 180°.

Det er forskjellige navn på forskjellige typer vinkler. Vi skal se på disse.

Definisjoner:

Vinkler 1.png



1: Rett vinkel, er en vinkel som er 90°. Kalles også for 90 graders vinkel.

2: Spiss vinkel, er en vinkel som er mindre enn 90º.

3: Stomp vinkel, er en vinkel som er større enn 90º.


Nabovinkler

Summen av to nabovinkler er 180º

Nabovink 1.png

Toppvinkler

Når to linjer krysser hverandre dannes det fire vinkler som parvis er like store.

Toppvink 1.png



Samsvarende vinkler

Vinkler som har forskjellig toppunkt, men et vinkelbein felles, kalles samsvarende vinkler.

Samsvar.png

Dersom man vet, eller kan vise at linjen l er parallell med linjen m er vinkel a lik vinkel b, vinkel c lik vinkel d, osv.

Speiling & symmetri

Speiling om en Linje

Når du betrakter deg selv i speilet vil du se følgende: Dersom du beveger deg mot speilet, vil speilbildet bevege seg mot deg. Dersom du rygger vil speilbildet trekke seg tilbake. Tenk deg at vi kunne observere dette fra siden, da ville vi ha ditt hode og speilbildet i profil, og speilet ville bare være en strek (fordi vi ser det fra siden). Dette kan se noe slik ut:

Speil 1.png


Når vi i matematikken skal speile noe om en akse eller linje gjør vi følgende: Vi trekker linjer fra punkt på det objekt som skal speiles. Disse linjene skal stå normalt på linjen man speiler om. Mål avstanden fra punktet på objektet til speilingslinjen. Denne avstanden Legger du så til på andre siden av speilingslinjen. Der merker du av punktet som blir et punkt på speilbildet. Dersom vi har en figur med et punkt A, kaller vi tilsvarende punkt på speilbildet for A'. Dette kan foreksempel se slik ut:

Speil 2.png


Legg merke till at avstanden fra Ø til speil er lik avstanden fra speil til Ø', avstanden fra N til speil er lik avstanden fra speil til N', osv.

Om vi starter med situasjonen til venstre

Speil 4.png

blir resultatet av speilingen situasjonen til høyre. Dersom figuren vi skal speile ligger delvis over speilingslinjen kan det se slik ut:

Speil 5.png


speiling om linje

Symmetriakser

Noen eksempler på symmetriakser er vist nedenfor. Vi observerer at forskjellige former har forskjellig antall symmetriakser.

Sym 1.png


Dersom vi bretter disse figurene langs en symmetriakse, de røde strekene, ser vi at delene på hver side av aksen vil overlappe hverandre fullstendig.

Speiling om et Punkt

Når vi speiler om et punkt trekker vi linjer fra objektet som skal speiles, gjennom punktet. Avstanden fra objektet til punktet er lik avstanden fra punktet til speilbildet.

Eks:

Speilpunkt 1.png


speiling om punkt

Kongruente Former

Geometriske figurer som dekker hverandre helt når vi legger den oppå hverandre kalles for kongruente. Det kan tenkes at vi må rotere figurene for at de skal dekke hverandre.

Kongr 1.png


Dersom figur B roteres 90º med klokka, ser vi at figur A og B dekker hverandre helt. A og B er kongruente figurer.

Trekanter

En trekant har tre vinkler og tre sidekanter.

Trekant.png

Vinkelsummen i en trekant er 180°

A + B + C = 180°


Arealet av en trekant er:

<math>Areal = \frac{Gh}{2} </math>



Der G er grunnlinja og h er høyden av trekanten.

Figuren under viser hvorfor formelen for arealet er slik.

Trekant2.png

Rettvinklet Trekant

En rettvinklet trekant består av to kateter og en hypotenus. Begge katetene vil alltid utgjøre vinkelbeina i den rette vinkelen. Hypotenusen vil alltid være den lengste siden i trekanten.

Rettvinklet.png

En rett vinkel er 90 grader og markeres som vist i A.

Arealet av en rettvinklet trekant er katet ganger katet delt på to. Fordi det ene katetet gir høyden i trekanten, og det andre grunnlinjen. Det er selvsagt mulig å bruke hypotenusen som grunnlinjen, men det vil ogfe føre til noe mer komplisert regning fordi man da må finne høyden fra hypotenusen til motstående vinlel.

Likebeint Trekant

Dersom to av sidene i en trekant er like lange er trekanten likebeint. "Pinnene" på sidene AC og BC markere at disse sidene er like lange. Når to sider i en trekant er like lange medfører det at to vinkler er like store. I dette eksempelet er vinkel A og vinkel B like store.

Likebeint.png

Likesidet Trekant

I en likesidet trekant er alle sidene like lange og alle vinklene er 60°

Likesidet.png

Pythagoras

Pythagoras setning kan i hovedsak brukes til tre ting;

1. finne lengden av hypotenusen i en rettvinklet trekant


2. finne lengden av et katet i en rettvinklet trekant


3. finne ut om en trekant er rettvinklet


I en rettvinklet trekant er arealet av kvadratet på hypotenusen lik summen av arealet til kvadratene på katetene.

Pyt.png


<math>c^2 = a^2 + b^2 </math>

Kvadratet utspent av hypotenusen er lik summen av kvadratene utspent av katetene.

Setningen gjelder kun for rettvinklede trekanter.






Eksempel 9: (hypotenus og et katet kjent)


Pyt31.png

Hva er lengden av AC?

<math>(AB)^2 +(AC)^2 = (BC)^2 \\(5cm)^2 + (AC)^2 = (10cm)^2 \\25cm^2 + (AC)^2 = 100cm^2 \\AC = \sqrt {75cm^2} = 8,7 cm </math>






Eksempel 10: (begge kateter kjent)


Pyt32-.png

Hva er lengden av BC?

<math>(AB)^2 +(AC)^2 = (BC)^2 \\(3cm)^2 + (4cm)^2 = (BC)^2 \\9cm^2 + 16cm^2 = (BC)^2 \\BC = \sqrt {25cm^2} = 5 cm </math>


I en rettvinklet trekant der vinklene er 30° ,60° og 90° vil alltid hypotenusen være dobbelt så lang som det korteste katetet. Det korteste katetet vil alltid være det motstående til vinkelen på 30°. Dette medfører blant annet at vi er i stand til å finne to sider i en rettvinklet trekant, når betingelsene er som over og vi kjenner en side.


Eksempel 11:(spesialtilfelle)


Pyt33.png

Finn AC og BC.

Siden vi har 30°,60° og 90° i trekanten vet vi at BC = 2 AC. La oss sette AC = x

<math>(AB)^2 +(AC)^2 = (BC)^2 \\(8cm)^2 + x^2 = (2x)^2 \\64cm^2 + x^2 = 4x^2 \\3x^2 = 64cm^2\\x^2 = 21,3cm^2\\x=4,6cm </math>

AC = 4,6 cm og BC = 9,2 cm.

Man kan bruke Pytagoras til å sjekke om en gitt trekant er rettvinklet. Man sjekker om kvadratet utspendt av den lengste siden er lik summen av kvadratene utspendt av de to korteste.


Eksempel 12:(spesialtilfelle)

I en trekant er siden 3 meter, 4 meter og 5,5 meter. Er trekanten rettvinklet?

LØSNING:

Dersom trekanten er rettvinklet må den lengste siden være hypotenusen. Det betyr at <math>3^2 + 4^2 = 25</math> må være lik <math>5,5^2</math>. Det er ikke tilfellet, derfor er trekanten ikke rettvinklet.


Test deg selv

Firkanter

Kvadrat

Et kvadrat er en firkant hvor alle sidene er like lange og alle vinklene er 90°. Diagonalene er markert med røde linjer. En diagonal er en rett linje som går fra et hjørne i firkanten til motstående hjørne. Et kvadrat er et spesialtilfelle av et rektangel.

Kvadrat 1.png

Arealet av kvadratet er:

<math> A = a \cdot a = a^2</math>

Omkretsen av kvadratet er:

<math> O = a + a + a + a = 4a.</math>

Test deg selv

Rektangel

Rektangel 1.png


Et rektangel er en firkant der sidene er parvis like lange. Vinklene er 90°.


Arealet av rektangelet er: A = ab


Omkretsen er: O = a + a + b + b = 2a + 2b.





Test deg selv

Parallellogram

Parallellogram 1.png


Et parallellogram er en firkant hvor sidene er parvis parallelle.

Areal:

A = ah


Omkrets

O = 2(a+b)

Rombe

Rombe 1.png


En rombe er en firkant der alle sidene er like lange og parvis parallelle. En rombe er et spesialtilfelle av et parallellogram.

Areal:

A = ah



Omkrets:

Da alle sidene er like lange er

a = b = c = d

Da blir

O = 4a

Test deg selv

Trapes

Trapes 1.png



I et trapes er to av sidene parallelle.  Trapes 

Areal:

<math> A= \frac{h \cdot (AB+CD)}{2}</math>


Omkrets:

O = AB + BC + CD + DA

Sirkelen

Begreper

Sirken 1.png


  • Sentrum i en sirkel er det punkt hvor avstanden til sirkelbuen eller sirkelperiferien er den samme i alle retninger.
  • Sirkelperiferien er en kurve hvor avstanden til sentrum er den samme fra alle punkter på kurven.
  • Denne avstanden kalles for radien.
  • Diameteren er dobbelt så lang som radien. Diameteren er en rett linje som går fra et vilkårlig punkt P på sirkelbuen, gjennom sentrum av sirkelen, til et punkt på sirkelbuen som ligge på motsattside av P i forhold til sentrum av sirkelen.
  • En tangent er en linje som tangerer sirkelperiferien, dvs. den berører kurven i et punkt.
  • En korde er en rett linje som går mellom to vilkårlige punkter på sirkelperiferien.
  • Området mellom sirkelbuen og korden kalles for et segment.
  • En sekant er en linje som skjærer gjennom sirkelperiferien i to vilkårlige punkt.


Du har sikkert mange sirkelformede gjenstander hjemme, bøtte, lysestaker, klokker, etc. Om du måler omkretsen og diameteren på en av disse sirklene og deler omkretsen på diameteren vil du få et svar som er ca. 3,14. Dersom du gjør det samme med alle de andre sirklene, uansett størrelse, vil du få samme resultat.

Dersom du var veldig nøyaktig og hadde superdupert nøyaktige instrumenter ville du fått 3,1415926... Dette tallet brukes mye i matematikken. Vi kaller det for Pi, tegnet vi bruker er dette: <math>\pi</math>

Sirkler tilhører en gruppe kurver som vi kaller for kjeglesnitt. Andre kurver som også tilhører denne gruppen er ellipser, parabler og hyperbler.

Omkrets

Vi har vist at omkretsen O, av en sirkel er gitt ved:


<math>O = 2 \pi r</math>

der r er radius i sirkelen.


Eksempel:

Finn omkretsen i en sirkel med radius 12 cm.

<math>O = 2 \pi r = 2 \cdot \pi \cdot 12cm = 2 \cdot 3,14 \cdot 12 cm =75,36 cm</math>




Test deg selv

Areal

Arealet av en sirkel er gitt ved:

<math>A= \pi r^2</math>

Der r er radius i sirkelen.


Eksempel:

Finn arealet i en sirkel med radius 8 cm.

<math>A= \pi r^2 = \pi \cdot (8 cm)^2 = 200,96 cm^2</math>


Test deg selv



Tilbake til Ungdomstrinn Hovedside

Tilbake til hovedside

Volum og Overflate

Prismege.png


Dersom grunnflaten G og toppflaten T er to parallelle, kongruente plan er volumet gitt ved:

V = Grunnflate · høyde = G · h

Legemets overflate er gitt ved:

O = 2 · Grunnflate + Omkrets Av Grunnflate · høyde

Terning

En terning, eller kube, er en romfigur som avgrenses av seks kvadratiske flater. En terning er et spesialtillfelle av et prisme. Alle sidekantene har derfor samme lengde. Dersom sidekantene av terningen er lik a, kan terningen se slik ut:

Kube3.PNG


Overflaten av en terning blir summen av de seks kvadratenes areal:

<math>O = 6a^2</math>

Eks:

En terning har sidekanter seks centimeter. Hva er overflaten av terningen?

<math>O = 6 \cdot (6cm)^2 = 216cm^2</math>

Eks:

En tening har en overflate på <math>432cm^2</math>. Hvor lange er sidekantene i terningen?

<math>O = 6a^2 \Rightarrow a = \sqrt{\frac O6} = \sqrt{ \frac{432cm^2}{6}}= 8,5cm</math>


Volumet av en terning er lengde ganger bredde ganger høyde. Siden disse har samme lengde kan vi skrive volumet som:

<math>V = a\cdot a \cdot a = a^3</math>

Eks:

Sidekantene i en terning er 2cm. Hva er volumet av terningen?

<math>V = a\cdot a \cdot a = a^3 = (2cm)^3 = 8cm^3</math>

Eks

En kube har et volum på <math>125cm^3</math>. Hva er lengden av en sidekant?

<math>V = a\cdot a \cdot a = a^3 \Rightarrow a= \sqrt[3] V = \sqrt[3]{125cm^3}= 5cm</math>


Test deg selv

Prisme

Et prisme er en romfigur der grunnflate og toppflate er like, og med rektangulære sideflater som står vinkelrett på grunnflaten. Det finnes altså prismer med svært forskjellig form. Et rett firkantet prisme kan se slik ut:

3d2.png

Arealet av prismets grunnflate er lengde gange bredde. Når vi multipliserer arealet av grunnflaten med høyden, finner vi volumet.

Grunnflate = lengde · bredde = l · b

Volum : V = Grunnflate · h = l · b · h

Eks:

Et rett prisme har siden 4cm, 10cm og 20cm. Hva er volumet av prismet?

V = Grunnflate · h = l · b · h vi får:

<math> V = l \cdot b \cdot h = 4cm \cdot 10cm \cdot 20cm = 800cm^3</math>

(Hva man kaller for bredde, lengde og høyde spiller egentlig ingen rolle, for et rett firkantet prisme. Det kommer jo an på hvordan prismet står eller ligger. Grunnflaten er den siden som vender ned mot jorden)

Eks:

Volumet av et rett firkantet prisme er 200 kubikkcentimeter. Høyden er 5 cm og bredden er 2cm. Hva er lengden av prismet?

<math>V = l \cdot b \cdot h \Rightarrow l = \frac{V}{bh}= \frac{200cm^3}{2cm \cdot 5cm} = 20cm</math>

Et rett firkantet prisme er avgrenset av flater hvor to og to er like. Overflaten blir:

Overflate: O = 2lb + 2lh + 2bh

Et firkantet prisme har høyden 12cm. Sidene i grunnflaten er henholdsvis 10cm og 20 cm. Hva er overflaten av prismet?

Siden to og to sider er like store får vi:

<math> O = 2 \cdot 10cm \cdot 20cm + 2 \cdot 10cm \cdot 12cm + 2 \cdot 20cm \cdot 12cm = 400cm^2 + 240cm^2 + 480cm^2 = 1120cm^2</math>

Dette er også et prisme:

Prisme3.PNG


Test deg selv

Sylinder

Silynder.png

Volum:

<math>V = Gh= \pi \cdot r^2 \cdot h </math>

Eks:

En sylinder har høyde 20 cm og radius 5cm. Hva er volumet?

<math>V = Gh= \pi \cdot r^2 \cdot h = \pi \cdot (5cm)^2 \cdot 20cm = 1570,8 cm^3 = 1,57 dm^3 = 1,57 liter </math>


Overflate:

<math> O = 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h </math>

Man regner her med at sylinderen har et lokk, altså en overflate på toppen også. Dersom den ikke har det blir overflaten:

<math> O = \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h </math>

En tank har form som en sylinder. Den har form som vist på figuren. Hva er overflaten av tanken?

Tank.PNG

<math> O = \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h = \pi \cdot (4m)^2 + 2 \pi \cdot 4m \cdot 12m = 352m^2</math>


Test deg selv

Pyramide

Kvadpyd.png

Volum:

<math>V= \frac 13 Gh </math>

Eksempel

En pyramide har en rektangulær grunnflate med sider 4,0 cm og 2,0cm. Høyden er 10,0 cm. Hva er volumet av pyramiden?

<math>V= \frac 13 Gh = \frac 13 \cdot (4,0 cm \cdot 2,0 cm)\cdot 10,0 cm = 26,7cm^3 </math>

Eksempel

En pyramide har høyde 12,0cm. Volumet er <math>30 cm^3</math>. Grunnflaten er et kvadrat. Hvor lang er en side i kvadratet?

Vi finner først arealet av grunnflaten:

<math>V= \frac 13 Gh \Rightarrow G = \frac{3V}{h} = \frac{3 \cdot 30cm^2}{12,0cm} = 7,5cm^2 </math>

Ved å ta kvadratroten av <math>7,5cm^2</math> finner man at sidene i kvadratet er 2,7cm.

Overflaten av en pyramide er summen av alle sidenes areal.

Test deg selv

Kjegle

Kon.png

Volum:

<math>V = \frac{1}{3}\pi r^2h </math>

Eksempel

En kjegle har en grunnflate med radius 5cm. Høyden i kjeglen er 12 cm. Hva er volumet av kjeglen?

<math>V = \frac{1}{3}\pi r^2h = \frac 13 \pi (5cm)^2 \cdot 12cm = 314 cm^3</math>

Eksempel

En kjegle med volum <math>400cm^3</math> har høyden 4cm. Hva er radiusen i kjeglens grunnflate?

<math>V = \frac{1}{3}\pi r^2h \quad \Rightarrow \quad 400cm^3 = \frac{1}{3}\pi r^2 \cdot 4cm \quad \Rightarrow \quad

r^2 = \frac{3 \cdot 400cm^3}{4cm}\quad \Rightarrow \quad r= 17,3 cm </math>

Eksempel

En kjegle har en grunnflate med radius 6cm og et volum på <math>300cm^3</math>. Hva er kjeglens høyde?

<math>V= \frac 13 \pi r^2h \Rightarrow h = \frac{3V}{\pi r^2} \Rightarrow h =\frac{3 \cdot 300cm^3}{\pi 36cm^2}= 8cm </math>


Overflate:

<math> 0 = \pi r^2 + \pi rs</math>

s er siden av kjeglen og finnes ved å bruke pytagoras:

<math> s = \sqrt{h^2 + r^2}</math>

Eksempel

En kjegle har høyde 4cm og radiusen i grunnflaten er 3 cm. Hva er kjeglens overflate?

Finner først s:

<math> s = \sqrt{r^2+h^2}= \sqrt{9cm^2+16cm^2} = 5cm </math>

Overflaten blir da:

<math> 0 = \pi r^2 + \pi rs = \pi \cdot (3cm)^2 + \pi \cdot 3cm \cdot 5cm = 75,4cm^2</math>

Eksempel

Kjegle1.PNG

Finn overflatearealet og volumet av kjeglen.

Her kjenner vi S og r og finner høyden h ved å bruke pytagoras:

<math> h = \sqrt{(10cm)^2 - (7cm)^2}= 7,14cm </math>

Volumet blir:

<math>V= \frac 13 \pi r^2h = \frac 13 \pi \cdot (7cm)^2 \cdot 7,14cm = 366 cm^3</math>

Overflaten blir:

<math> 0 = \pi r^2 + \pi rs = \pi \cdot (7 cm)^2 + \pi \cdot 7cm \cdot 10 cm = 374cm^2</math>



Test deg selv

Kule

Kule.png

Volum:

<math>V = \frac{4}{3}\pi r^3 </math>

Eksempel

En kule har radius 4 cm. Hva er volumet?

<math>V = \frac{4}{3}\pi (4cm)^3 = 268,1 cm^3 </math>

Eksempel

En kule har volum <math>712cm^3</math>. Hva er radiusen?

<math>V = \frac{4}{3}\pi r^3 \\ r = \sqr[3]{\frac{2V}{4 \pi}} \\ r = \sqr[3]{\frac{3 \cdot 268,1 cm^3}{4 \pi}} = 4</math>


Overflate:

<math>O = 4 \pi r^2 </math>

Eksempel

En kule har radius 6 cm. Hva er overflaten?

<math>O = 4 \pi r^2 = 4 \pi (6cm)^2 = 452,4 cm^2 </math>

Eksempel

En kule har overflate <math>400cm^2</math>. Hva er diameteren?

<math> O = 4 \pi r^2 \\ r= sqrt{ \frac{O}{4 \pi}} \\ r= sqrt{ \frac{400 cm^2}{4 \pi}}= 5,64</math>

d = 2r = 11,3 cm.

Test deg selv




Tilbake til Ungdomstrinn Hovedside

Tilbake til hovedside